Medical Image Understanding and Analysis

Medical Image Understanding and Analysis
Author :
Publisher : Springer Nature
Total Pages : 566
Release :
ISBN-10 : 9783030804329
ISBN-13 : 3030804321
Rating : 4/5 (29 Downloads)

Synopsis Medical Image Understanding and Analysis by : Bartłomiej W. Papież

This book constitutes the refereed proceedings of the 25th Conference on Medical Image Understanding and Analysis, MIUA 2021, held in July 2021. Due to COVID-19 pandemic the conference was held virtually. The 32 full papers and 8 short papers presented were carefully reviewed and selected from 77 submissions. They were organized according to following topical sections: biomarker detection; image registration, and reconstruction; image segmentation; generative models, biomedical simulation and modelling; classification; image enhancement, quality assessment, and data privacy; radiomics, predictive models, and quantitative imaging.

Medical Image Understanding and Analysis

Medical Image Understanding and Analysis
Author :
Publisher : Springer
Total Pages : 955
Release :
ISBN-10 : 9783319609645
ISBN-13 : 3319609645
Rating : 4/5 (45 Downloads)

Synopsis Medical Image Understanding and Analysis by : María Valdés Hernández

This book constitutes the refereed proceedings of the 21st Annual Conference on Medical Image Understanding and Analysis, MIUA 2017, held in Edinburgh, UK, in July 2017. The 82 revised full papers presented were carefully reviewed and selected from 105 submissions. The papers are organized in topical sections on retinal imaging, ultrasound imaging, cardiovascular imaging, oncology imaging, mammography image analysis, image enhancement and alignment, modeling and segmentation of preclinical, body and histological imaging, feature detection and classification. The chapters 'Model-Based Correction of Segmentation Errors in Digitised Histological Images' and 'Unsupervised Superpixel-Based Segmentation of Histopathological Images with Consensus Clustering' are open access under a CC BY 4.0 license.

Deep Learning for Medical Image Analysis

Deep Learning for Medical Image Analysis
Author :
Publisher : Academic Press
Total Pages : 544
Release :
ISBN-10 : 9780323858885
ISBN-13 : 0323858880
Rating : 4/5 (85 Downloads)

Synopsis Deep Learning for Medical Image Analysis by : S. Kevin Zhou

Deep Learning for Medical Image Analysis, Second Edition is a great learning resource for academic and industry researchers and graduate students taking courses on machine learning and deep learning for computer vision and medical image computing and analysis. Deep learning provides exciting solutions for medical image analysis problems and is a key method for future applications. This book gives a clear understanding of the principles and methods of neural network and deep learning concepts, showing how the algorithms that integrate deep learning as a core component are applied to medical image detection, segmentation, registration, and computer-aided analysis.· Covers common research problems in medical image analysis and their challenges · Describes the latest deep learning methods and the theories behind approaches for medical image analysis · Teaches how algorithms are applied to a broad range of application areas including cardiac, neural and functional, colonoscopy, OCTA applications and model assessment · Includes a Foreword written by Nicholas Ayache

Medical Image Understanding and Analysis

Medical Image Understanding and Analysis
Author :
Publisher : Springer Nature
Total Pages : 913
Release :
ISBN-10 : 9783031120534
ISBN-13 : 3031120531
Rating : 4/5 (34 Downloads)

Synopsis Medical Image Understanding and Analysis by : Guang Yang

This book constitutes the refereed proceedings of the 26th Conference on Medical Image Understanding and Analysis, MIUA 2022, held in Cambridge, UK, in July 2022. The 65 full papers presented were carefully reviewed and selected from 95 submissions. They were organized according to following topical sections: biomarker detection; image registration, and reconstruction; image segmentation; generative models, biomedical simulation and modelling; classification; image enhancement, quality assessment, and data privacy; radiomics, predictive models, and quantitative imaging. Chapter “FCN-Transformer Feature Fusion for Polyp Segmentation” is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.

Medical Image Analysis

Medical Image Analysis
Author :
Publisher : Academic Press
Total Pages : 700
Release :
ISBN-10 : 9780128136584
ISBN-13 : 0128136588
Rating : 4/5 (84 Downloads)

Synopsis Medical Image Analysis by : Alejandro Frangi

Medical Image Analysis presents practical knowledge on medical image computing and analysis as written by top educators and experts. This text is a modern, practical, self-contained reference that conveys a mix of fundamental methodological concepts within different medical domains. Sections cover core representations and properties of digital images and image enhancement techniques, advanced image computing methods (including segmentation, registration, motion and shape analysis), machine learning, how medical image computing (MIC) is used in clinical and medical research, and how to identify alternative strategies and employ software tools to solve typical problems in MIC. - An authoritative presentation of key concepts and methods from experts in the field - Sections clearly explaining key methodological principles within relevant medical applications - Self-contained chapters enable the text to be used on courses with differing structures - A representative selection of modern topics and techniques in medical image computing - Focus on medical image computing as an enabling technology to tackle unmet clinical needs - Presentation of traditional and machine learning approaches to medical image computing

Medical Image Understanding and Analysis

Medical Image Understanding and Analysis
Author :
Publisher : Springer Nature
Total Pages : 452
Release :
ISBN-10 : 9783030527914
ISBN-13 : 3030527913
Rating : 4/5 (14 Downloads)

Synopsis Medical Image Understanding and Analysis by : Bartłomiej W. Papież

This book constitutes the refereed proceedings of the 24th Conference on Medical Image Understanding and Analysis, MIUA 2020, held in July 2020. Due to COVID-19 pandemic the conference was held virtually. The 29 full papers and 5 short papers presented were carefully reviewed and selected from 70 submissions. They were organized according to following topical sections: ​image segmentation; image registration, reconstruction and enhancement; radiomics, predictive models, and quantitative imaging biomarkers; ocular imaging analysis; biomedical simulation and modelling.

Handbook of Medical Imaging

Handbook of Medical Imaging
Author :
Publisher : Academic Press
Total Pages : 983
Release :
ISBN-10 : 9780080533100
ISBN-13 : 0080533108
Rating : 4/5 (00 Downloads)

Synopsis Handbook of Medical Imaging by :

In recent years, the remarkable advances in medical imaging instruments have increased their use considerably for diagnostics as well as planning and follow-up of treatment. Emerging from the fields of radiology, medical physics and engineering, medical imaging no longer simply deals with the technology and interpretation of radiographic images. The limitless possibilities presented by computer science and technology, coupled with engineering advances in signal processing, optics and nuclear medicine have created the vastly expanded field of medical imaging. The Handbook of Medical Imaging is the first comprehensive compilation of the concepts and techniques used to analyze and manipulate medical images after they have been generated or digitized. The Handbook is organized in six sections that relate to the main functions needed for processing: enhancement, segmentation, quantification, registration, visualization as well as compression storage and telemedicine. * Internationally renowned authors(Johns Hopkins, Harvard, UCLA, Yale, Columbia, UCSF) * Includes imaging and visualization * Contains over 60 pages of stunning, four-color images

Advanced Machine Vision Paradigms for Medical Image Analysis

Advanced Machine Vision Paradigms for Medical Image Analysis
Author :
Publisher : Academic Press
Total Pages : 310
Release :
ISBN-10 : 9780128192962
ISBN-13 : 0128192968
Rating : 4/5 (62 Downloads)

Synopsis Advanced Machine Vision Paradigms for Medical Image Analysis by : Tapan K. Gandhi

Computer vision and machine intelligence paradigms are prominent in the domain of medical image applications, including computer assisted diagnosis, image guided radiation therapy, landmark detection, imaging genomics, and brain connectomics. Medical image analysis and understanding are daunting tasks owing to the massive influx of multi-modal medical image data generated during routine clinal practice. Advanced computer vision and machine intelligence approaches have been employed in recent years in the field of image processing and computer vision. However, due to the unstructured nature of medical imaging data and the volume of data produced during routine clinical processes, the applicability of these meta-heuristic algorithms remains to be investigated. Advanced Machine Vision Paradigms for Medical Image Analysis presents an overview of how medical imaging data can be analyzed to provide better diagnosis and treatment of disease. Computer vision techniques can explore texture, shape, contour and prior knowledge along with contextual information, from image sequence and 3D/4D information which helps with better human understanding. Many powerful tools have been developed through image segmentation, machine learning, pattern classification, tracking, and reconstruction to surface much needed quantitative information not easily available through the analysis of trained human specialists. The aim of the book is for medical imaging professionals to acquire and interpret the data, and for computer vision professionals to learn how to provide enhanced medical information by using computer vision techniques. The ultimate objective is to benefit patients without adding to already high healthcare costs. - Explores major emerging trends in technology which are supporting the current advancement of medical image analysis with the help of computational intelligence - Highlights the advancement of conventional approaches in the field of medical image processing - Investigates novel techniques and reviews the state-of-the-art in the areas of machine learning, computer vision, soft computing techniques, as well as their applications in medical image analysis

Introduction to Medical Image Analysis

Introduction to Medical Image Analysis
Author :
Publisher : Springer Nature
Total Pages : 185
Release :
ISBN-10 : 9783030393649
ISBN-13 : 303039364X
Rating : 4/5 (49 Downloads)

Synopsis Introduction to Medical Image Analysis by : Rasmus R. Paulsen

This easy-to-follow textbook presents an engaging introduction to the fascinating world of medical image analysis. Avoiding an overly mathematical treatment, the text focuses on intuitive explanations, illustrating the key algorithms and concepts in a way which will make sense to students from a broad range of different backgrounds. Topics and features: explains what light is, and how it can be captured by a camera and converted into an image, as well as how images can be compressed and stored; describes basic image manipulation methods for understanding and improving image quality, and a useful segmentation algorithm; reviews the basic image processing methods for segmenting or enhancing certain features in an image, with a focus on morphology methods for binary images; examines how to detect, describe, and recognize objects in an image, and how the nature of color can be used for segmenting objects; introduces a statistical method to determine what class of object the pixels in an image represent; describes how to change the geometry within an image, how to align two images so that they are as similar as possible, and how to detect lines and paths in images; provides further exercises and other supplementary material at an associated website. This concise and accessible textbook will be invaluable to undergraduate students of computer science, engineering, medicine, and any multi-disciplinary courses that combine topics on health with data science. Medical practitioners working with medical imaging devices will also appreciate this easy-to-understand explanation of the technology.

Medical Image Understanding and Analysis

Medical Image Understanding and Analysis
Author :
Publisher : Springer Nature
Total Pages : 436
Release :
ISBN-10 : 9783031669552
ISBN-13 : 303166955X
Rating : 4/5 (52 Downloads)

Synopsis Medical Image Understanding and Analysis by : Moi Hoon Yap

Zusammenfassung: This two-volume set LNCS 14859-14860 constitutes the proceedings of the 28th Annual Conference on Medical Image Understanding and Analysis, MIUA 2024, held in Manchester, UK, during July 24-26, 2024. The 59 full papers included in this book were carefully reviewed and selected from 93 submissions. They were organized in topical sections as follows: Part I : Advancement in Brain Imaging; Medical Images and Computational Models; and Digital Pathology, Histology and Microscopic Imaging. Part II : Dental and Bone Imaging; Enhancing Low-Quality Medical Images; Domain Adaptation and Generalisation; and Dermatology, Cardiac Imaging and Other Medical Imaging