Mechanisms of Gene Regulation

Mechanisms of Gene Regulation
Author :
Publisher : Springer
Total Pages : 219
Release :
ISBN-10 : 9789401777414
ISBN-13 : 9401777411
Rating : 4/5 (14 Downloads)

Synopsis Mechanisms of Gene Regulation by : Carsten Carlberg

This textbook aims to describe the fascinating area of eukaryotic gene regulation for graduate students in all areas of the biomedical sciences. Gene expression is essential in shaping the various phenotypes of cells and tissues and as such, regulation of gene expression is a fundamental aspect of nearly all processes in physiology, both in healthy and in diseased states. This pivotal role for the regulation of gene expression makes this textbook essential reading for students of all the biomedical sciences, in order to be better prepared for their specialized disciplines. A complete understanding of transcription factors and the processes that alter their activity is a major goal of modern life science research. The availability of the whole human genome sequence (and that of other eukaryotic genomes) and the consequent development of next-generation sequencing technologies have significantly changed nearly all areas of the biological sciences. For example, the genome-wide location of histone modifications and transcription factor binding sites, such as provided by the ENCODE consortium, has greatly improved our understanding of gene regulation. Therefore, the focus of this book is the description of the post-genome understanding of gene regulation. The purpose of this book is to provide, in a condensed form, an overview on the present understanding of the mechanisms of gene regulation. The authors are not aiming to compete with comprehensive treatises, but rather focus on the essentials. Therefore, the authors have favored a high figure-to-text ratio following the rule stating that “a picture tells more than thousand words”. The content of the book is based on the lecture course, which is given by Prof. Carlberg since 2001 at the University of Eastern Finland in Kuopio. The book is subdivided into 4 sections and 13 chapters. Following the Introduction there are three sections, which take a view on gene regulation from the perspective of transcription factors, chromatin and non-coding RNA, respectively. Besides its value as a textbook, Mechanisms of Gene Regulation will be a useful reference for individuals working in biomedical laboratories.

Mechanisms of Gene Regulation: How Science Works

Mechanisms of Gene Regulation: How Science Works
Author :
Publisher : Springer Nature
Total Pages : 160
Release :
ISBN-10 : 9783030523213
ISBN-13 : 3030523217
Rating : 4/5 (13 Downloads)

Synopsis Mechanisms of Gene Regulation: How Science Works by : Carsten Carlberg

This textbook aims to describe the fascinating area of eukaryotic gene regulation for graduate students in all areas of the biomedical sciences. Gene expression is essential in shaping the various phenotypes of cells and tissues and as such, regulation of gene expression is a fundamental aspect of nearly all processes in physiology, both in healthy and in diseased states. Th is pivotal role for the regulation of gene expression makes this textbook essential reading for students of all the biomedical sciences, in order to be better prepared for their specialized disciplines. A complete understanding of transcription factors and the processes that alter their activity is a major goal of modern life science research. The availability of the whole human genome sequence (and that of other eukaryotic genomes) and the consequent development of next-generation sequencing technologies have significantly changed nearly all areas of the biological sciences. For example, the genome-wide location of histone modifications and transcription factor binding sites, such as provided by the ENCODE consortium, has greatly improved our understanding of gene regulation. Therefore, the focus of this book is the description of the post-genome understanding of gene regulation.

Mechanisms in Transcriptional Regulation

Mechanisms in Transcriptional Regulation
Author :
Publisher : John Wiley & Sons
Total Pages : 248
Release :
ISBN-10 : 9781444300451
ISBN-13 : 1444300458
Rating : 4/5 (51 Downloads)

Synopsis Mechanisms in Transcriptional Regulation by : Albert J. Courey

Mechanisms in Transcriptional Regulation provides a concisediscussion of the fundamental concepts in transcription and itsregulation. Covers RNA polymerases, transcriptional machinery, mechanismsof transcriptional activation, the histone code hypothesis, theepigenetic control of transcription, and combinatorial control insignaling and development Features over 80 figures available to download online Chapters include comprehensive reading lists, boxeshighlighting theoretical concepts and experimental methods andproblems designed to build and test understanding

Computational Genomics with R

Computational Genomics with R
Author :
Publisher : CRC Press
Total Pages : 463
Release :
ISBN-10 : 9781498781862
ISBN-13 : 1498781861
Rating : 4/5 (62 Downloads)

Synopsis Computational Genomics with R by : Altuna Akalin

Computational Genomics with R provides a starting point for beginners in genomic data analysis and also guides more advanced practitioners to sophisticated data analysis techniques in genomics. The book covers topics from R programming, to machine learning and statistics, to the latest genomic data analysis techniques. The text provides accessible information and explanations, always with the genomics context in the background. This also contains practical and well-documented examples in R so readers can analyze their data by simply reusing the code presented. As the field of computational genomics is interdisciplinary, it requires different starting points for people with different backgrounds. For example, a biologist might skip sections on basic genome biology and start with R programming, whereas a computer scientist might want to start with genome biology. After reading: You will have the basics of R and be able to dive right into specialized uses of R for computational genomics such as using Bioconductor packages. You will be familiar with statistics, supervised and unsupervised learning techniques that are important in data modeling, and exploratory analysis of high-dimensional data. You will understand genomic intervals and operations on them that are used for tasks such as aligned read counting and genomic feature annotation. You will know the basics of processing and quality checking high-throughput sequencing data. You will be able to do sequence analysis, such as calculating GC content for parts of a genome or finding transcription factor binding sites. You will know about visualization techniques used in genomics, such as heatmaps, meta-gene plots, and genomic track visualization. You will be familiar with analysis of different high-throughput sequencing data sets, such as RNA-seq, ChIP-seq, and BS-seq. You will know basic techniques for integrating and interpreting multi-omics datasets. Altuna Akalin is a group leader and head of the Bioinformatics and Omics Data Science Platform at the Berlin Institute of Medical Systems Biology, Max Delbrück Center, Berlin. He has been developing computational methods for analyzing and integrating large-scale genomics data sets since 2002. He has published an extensive body of work in this area. The framework for this book grew out of the yearly computational genomics courses he has been organizing and teaching since 2015.

Transcriptional Regulation in Eukaryotes

Transcriptional Regulation in Eukaryotes
Author :
Publisher : CSHL Press
Total Pages : 684
Release :
ISBN-10 : 0879696354
ISBN-13 : 9780879696351
Rating : 4/5 (54 Downloads)

Synopsis Transcriptional Regulation in Eukaryotes by : Michael F. Carey

In the genome era, the analysis of gene expression has become a critical requirement in many laboratories. But there has been no comprehensive source of strategic, conceptual, and technical information to guide this often complex task. Transcriptional Regulation in Eukaryotes answers that need. Written by two experienced investigators, Michael Carey and Stephen Smale at the UCLA School of Medicine, and based in part on the Gene Expression course taught at Cold Spring Harbor Laboratory, this book directly addresses all the concerns of a laboratory studying the regulation of a newly isolated gene and the biochemistry of a new transcription factor. This important and unique book is essential reading for anyone pursuing the analysis of gene expression in model systems or disease states.

Gene Expression and Regulation

Gene Expression and Regulation
Author :
Publisher : Springer
Total Pages : 0
Release :
ISBN-10 : 1441922032
ISBN-13 : 9781441922038
Rating : 4/5 (32 Downloads)

Synopsis Gene Expression and Regulation by : Jun Ma

This book offers a comprehensive look at the science of gene expression and regulation. Focusing on topics such as actions of nuclear receptors, RNA processing, and DNA methylation and imprinting, Gene Expression and Regulation is edited by a leading biologist and includes contributions by experts in the field. The focus is on scientific concepts and issues, rather than specific organisms or experimental approaches.

Epigenetic Gene Expression and Regulation

Epigenetic Gene Expression and Regulation
Author :
Publisher : Academic Press
Total Pages : 484
Release :
ISBN-10 : 9780128004715
ISBN-13 : 0128004711
Rating : 4/5 (15 Downloads)

Synopsis Epigenetic Gene Expression and Regulation by : Suming Huang

Epigenetic Gene Expression and Regulation reviews current knowledge on the heritable molecular mechanisms that regulate gene expression, contribute to disease susceptibility, and point to potential treatment in future therapies. The book shows how these heritable mechanisms allow individual cells to establish stable and unique patterns of gene expression that can be passed through cell divisions without DNA mutations, thereby establishing how different heritable patterns of gene regulation control cell differentiation and organogenesis, resulting in a distinct human organism with a variety of differing cellular functions and tissues. The work begins with basic biology, encompasses methods, cellular and tissue organization, topical issues in epigenetic evolution and environmental epigenesis, and lastly clinical disease discovery and treatment. Each highly illustrated chapter is organized to briefly summarize current research, provide appropriate pedagogical guidance, pertinent methods, relevant model organisms, and clinical examples. - Reviews current knowledge on the heritable molecular mechanisms that regulate gene expression, contribute to disease susceptibility, and point to potential treatment in future therapies - Helps readers understand how epigenetic marks are targeted, and to what extent transgenerational epigenetic changes are instilled and possibly passed onto offspring - Chapters are replete with clinical examples to empower the basic biology with translational significance - Offers more than 100 illustrations to distill key concepts and decipher complex science

Transcriptional Control of Neural Crest Development

Transcriptional Control of Neural Crest Development
Author :
Publisher : Morgan & Claypool Publishers
Total Pages : 227
Release :
ISBN-10 : 9781615040483
ISBN-13 : 161504048X
Rating : 4/5 (83 Downloads)

Synopsis Transcriptional Control of Neural Crest Development by : Brian L. Nelms

The neural crest is a remarkable embryonic population of cells found only in vertebrates and has the potential to give rise to many different cell types contributing throughout the body. These derivatives range from the mesenchymal bone and cartilage comprising the facial skeleton, to neuronal derivatives of the peripheral sensory and autonomic nervous systems, to melanocytes throughout the body, and to smooth muscle of the great arteries of the heart. For these cells to correctly progress from an unspecifi ed, nonmigratory population to a wide array of dynamic, differentiated cell types-some of which retain stem cell characteristics presumably to replenish these derivatives-requires a complex network of molecular switches to control the gene programs giving these cells their defi ning structural, enzymatic, migratory, and signaling capacities. This review will bring together current knowledge of neural crest-specifi c transcription factors governing these progressions throughout the course of development. A more thorough understanding of the mechanisms of transcriptional control in differentiation will aid in strategies designed to push undifferentiated cells toward a particular lineage, and unraveling these processes will help toward reprogramming cells from a differentiated to a more naive state. Table of Contents: Introduction / AP Genes / bHLH Genes / ETS Genes / Fox Genes / Homeobox Genes / Hox Genes / Lim Genes / Pax Genes / POU Domain Genes / RAR/RXR Genes / Smad Genes / Sox Genes / Zinc Finger Genes / Other Miscellaneous Genes / References / Author Biographies

Posttranscriptional Gene Regulation

Posttranscriptional Gene Regulation
Author :
Publisher :
Total Pages : 0
Release :
ISBN-10 : 3527665439
ISBN-13 : 9783527665433
Rating : 4/5 (39 Downloads)

Synopsis Posttranscriptional Gene Regulation by : Jane Wu

2.4 Regulation of Transcription by Termination2.4.1 Transcription Attenuation, Promoter Upstream/Associated Transcription, and Pausing of RNApII; 2.4.2 Alternative Polyadenylation and Termination; 2.5 Mechanisms of Termination by Other RNA Polymerases; 2.6 Future Perspectives; Acknowledgments; References; 3: Posttranscriptional Gene Regulation by an Editor: ADAR and its Role in RNA Editing; 3.1 Introduction; 3.2 The RNA Editing Kinship; 3.3 The ADAR Gene Family; 3.4 The Role of RNA in the A-to-I Editing Mechanism; 3.5 Splice Site Alterations.