Matrix Algebra From A Statisticians Perspective
Download Matrix Algebra From A Statisticians Perspective full books in PDF, epub, and Kindle. Read online free Matrix Algebra From A Statisticians Perspective ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: David A. Harville |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 639 |
Release |
: 2008-06-27 |
ISBN-10 |
: 9780387783567 |
ISBN-13 |
: 0387783563 |
Rating |
: 4/5 (67 Downloads) |
Synopsis Matrix Algebra From a Statistician's Perspective by : David A. Harville
A knowledge of matrix algebra is a prerequisite for the study of much of modern statistics, especially the areas of linear statistical models and multivariate statistics. This reference book provides the background in matrix algebra necessary to do research and understand the results in these areas. Essentially self-contained, the book is best-suited for a reader who has had some previous exposure to matrices. Solultions to the exercises are available in the author's "Matrix Algebra: Exercises and Solutions."
Author |
: David A. Harville |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 292 |
Release |
: 2011-06-27 |
ISBN-10 |
: 9781461301813 |
ISBN-13 |
: 1461301815 |
Rating |
: 4/5 (13 Downloads) |
Synopsis Matrix Algebra: Exercises and Solutions by : David A. Harville
This book contains over 300 exercises and solutions that together cover a wide variety of topics in matrix algebra. They can be used for independent study or in creating a challenging and stimulating environment that encourages active engagement in the learning process. The requisite background is some previous exposure to matrix algebra of the kind obtained in a first course. The exercises are those from an earlier book by the same author entitled Matrix Algebra From a Statistician's Perspective. They have been restated (as necessary) to stand alone, and the book includes extensive and detailed summaries of all relevant terminology and notation. The coverage includes topics of special interest and relevance in statistics and related disciplines, as well as standard topics. The overlap with exercises available from other sources is relatively small. This collection of exercises and their solutions will be a useful reference for students and researchers in matrix algebra. It will be of interest to mathematicians and statisticians.
Author |
: Sudipto Banerjee |
Publisher |
: CRC Press |
Total Pages |
: 586 |
Release |
: 2014-06-06 |
ISBN-10 |
: 9781420095388 |
ISBN-13 |
: 1420095382 |
Rating |
: 4/5 (88 Downloads) |
Synopsis Linear Algebra and Matrix Analysis for Statistics by : Sudipto Banerjee
Linear Algebra and Matrix Analysis for Statistics offers a gradual exposition to linear algebra without sacrificing the rigor of the subject. It presents both the vector space approach and the canonical forms in matrix theory. The book is as self-contained as possible, assuming no prior knowledge of linear algebra. The authors first address the rudimentary mechanics of linear systems using Gaussian elimination and the resulting decompositions. They introduce Euclidean vector spaces using less abstract concepts and make connections to systems of linear equations wherever possible. After illustrating the importance of the rank of a matrix, they discuss complementary subspaces, oblique projectors, orthogonality, orthogonal projections and projectors, and orthogonal reduction. The text then shows how the theoretical concepts developed are handy in analyzing solutions for linear systems. The authors also explain how determinants are useful for characterizing and deriving properties concerning matrices and linear systems. They then cover eigenvalues, eigenvectors, singular value decomposition, Jordan decomposition (including a proof), quadratic forms, and Kronecker and Hadamard products. The book concludes with accessible treatments of advanced topics, such as linear iterative systems, convergence of matrices, more general vector spaces, linear transformations, and Hilbert spaces.
Author |
: Alexander Basilevsky |
Publisher |
: Courier Corporation |
Total Pages |
: 412 |
Release |
: 2013-01-18 |
ISBN-10 |
: 9780486153377 |
ISBN-13 |
: 0486153371 |
Rating |
: 4/5 (77 Downloads) |
Synopsis Applied Matrix Algebra in the Statistical Sciences by : Alexander Basilevsky
This comprehensive text offers teachings relevant to both applied and theoretical branches of matrix algebra and provides a bridge between linear algebra and statistical models. Appropriate for advanced undergraduate and graduate students. 1983 edition.
Author |
: George A. F. Seber |
Publisher |
: John Wiley & Sons |
Total Pages |
: 592 |
Release |
: 2008-01-28 |
ISBN-10 |
: 9780470226780 |
ISBN-13 |
: 0470226781 |
Rating |
: 4/5 (80 Downloads) |
Synopsis A Matrix Handbook for Statisticians by : George A. F. Seber
A comprehensive, must-have handbook of matrix methods with a unique emphasis on statistical applications This timely book, A Matrix Handbook for Statisticians, provides a comprehensive, encyclopedic treatment of matrices as they relate to both statistical concepts and methodologies. Written by an experienced authority on matrices and statistical theory, this handbook is organized by topic rather than mathematical developments and includes numerous references to both the theory behind the methods and the applications of the methods. A uniform approach is applied to each chapter, which contains four parts: a definition followed by a list of results; a short list of references to related topics in the book; one or more references to proofs; and references to applications. The use of extensive cross-referencing to topics within the book and external referencing to proofs allows for definitions to be located easily as well as interrelationships among subject areas to be recognized. A Matrix Handbook for Statisticians addresses the need for matrix theory topics to be presented together in one book and features a collection of topics not found elsewhere under one cover. These topics include: Complex matrices A wide range of special matrices and their properties Special products and operators, such as the Kronecker product Partitioned and patterned matrices Matrix analysis and approximation Matrix optimization Majorization Random vectors and matrices Inequalities, such as probabilistic inequalities Additional topics, such as rank, eigenvalues, determinants, norms, generalized inverses, linear and quadratic equations, differentiation, and Jacobians, are also included. The book assumes a fundamental knowledge of vectors and matrices, maintains a reasonable level of abstraction when appropriate, and provides a comprehensive compendium of linear algebra results with use or potential use in statistics. A Matrix Handbook for Statisticians is an essential, one-of-a-kind book for graduate-level courses in advanced statistical studies including linear and nonlinear models, multivariate analysis, and statistical computing. It also serves as an excellent self-study guide for statistical researchers.
Author |
: James E. Gentle |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 536 |
Release |
: 2007-07-27 |
ISBN-10 |
: 9780387708720 |
ISBN-13 |
: 0387708723 |
Rating |
: 4/5 (20 Downloads) |
Synopsis Matrix Algebra by : James E. Gentle
Matrix algebra is one of the most important areas of mathematics for data analysis and for statistical theory. This much-needed work presents the relevant aspects of the theory of matrix algebra for applications in statistics. It moves on to consider the various types of matrices encountered in statistics, such as projection matrices and positive definite matrices, and describes the special properties of those matrices. Finally, it covers numerical linear algebra, beginning with a discussion of the basics of numerical computations, and following up with accurate and efficient algorithms for factoring matrices, solving linear systems of equations, and extracting eigenvalues and eigenvectors.
Author |
: Alvin C. Rencher |
Publisher |
: John Wiley & Sons |
Total Pages |
: 690 |
Release |
: 2008-01-07 |
ISBN-10 |
: 9780470192603 |
ISBN-13 |
: 0470192607 |
Rating |
: 4/5 (03 Downloads) |
Synopsis Linear Models in Statistics by : Alvin C. Rencher
The essential introduction to the theory and application of linear models—now in a valuable new edition Since most advanced statistical tools are generalizations of the linear model, it is neces-sary to first master the linear model in order to move forward to more advanced concepts. The linear model remains the main tool of the applied statistician and is central to the training of any statistician regardless of whether the focus is applied or theoretical. This completely revised and updated new edition successfully develops the basic theory of linear models for regression, analysis of variance, analysis of covariance, and linear mixed models. Recent advances in the methodology related to linear mixed models, generalized linear models, and the Bayesian linear model are also addressed. Linear Models in Statistics, Second Edition includes full coverage of advanced topics, such as mixed and generalized linear models, Bayesian linear models, two-way models with empty cells, geometry of least squares, vector-matrix calculus, simultaneous inference, and logistic and nonlinear regression. Algebraic, geometrical, frequentist, and Bayesian approaches to both the inference of linear models and the analysis of variance are also illustrated. Through the expansion of relevant material and the inclusion of the latest technological developments in the field, this book provides readers with the theoretical foundation to correctly interpret computer software output as well as effectively use, customize, and understand linear models. This modern Second Edition features: New chapters on Bayesian linear models as well as random and mixed linear models Expanded discussion of two-way models with empty cells Additional sections on the geometry of least squares Updated coverage of simultaneous inference The book is complemented with easy-to-read proofs, real data sets, and an extensive bibliography. A thorough review of the requisite matrix algebra has been addedfor transitional purposes, and numerous theoretical and applied problems have been incorporated with selected answers provided at the end of the book. A related Web site includes additional data sets and SAS® code for all numerical examples. Linear Model in Statistics, Second Edition is a must-have book for courses in statistics, biostatistics, and mathematics at the upper-undergraduate and graduate levels. It is also an invaluable reference for researchers who need to gain a better understanding of regression and analysis of variance.
Author |
: Jan R. Magnus |
Publisher |
: John Wiley & Sons |
Total Pages |
: 660 |
Release |
: 2019-03-15 |
ISBN-10 |
: 9781119541165 |
ISBN-13 |
: 1119541166 |
Rating |
: 4/5 (65 Downloads) |
Synopsis Matrix Differential Calculus with Applications in Statistics and Econometrics by : Jan R. Magnus
A brand new, fully updated edition of a popular classic on matrix differential calculus with applications in statistics and econometrics This exhaustive, self-contained book on matrix theory and matrix differential calculus provides a treatment of matrix calculus based on differentials and shows how easy it is to use this theory once you have mastered the technique. Jan Magnus, who, along with the late Heinz Neudecker, pioneered the theory, develops it further in this new edition and provides many examples along the way to support it. Matrix calculus has become an essential tool for quantitative methods in a large number of applications, ranging from social and behavioral sciences to econometrics. It is still relevant and used today in a wide range of subjects such as the biosciences and psychology. Matrix Differential Calculus with Applications in Statistics and Econometrics, Third Edition contains all of the essentials of multivariable calculus with an emphasis on the use of differentials. It starts by presenting a concise, yet thorough overview of matrix algebra, then goes on to develop the theory of differentials. The rest of the text combines the theory and application of matrix differential calculus, providing the practitioner and researcher with both a quick review and a detailed reference. Fulfills the need for an updated and unified treatment of matrix differential calculus Contains many new examples and exercises based on questions asked of the author over the years Covers new developments in field and features new applications Written by a leading expert and pioneer of the theory Part of the Wiley Series in Probability and Statistics Matrix Differential Calculus With Applications in Statistics and Econometrics Third Edition is an ideal text for graduate students and academics studying the subject, as well as for postgraduates and specialists working in biosciences and psychology.
Author |
: Shayle R. Searle |
Publisher |
: John Wiley & Sons |
Total Pages |
: 517 |
Release |
: 2017-05-01 |
ISBN-10 |
: 9781118935149 |
ISBN-13 |
: 1118935144 |
Rating |
: 4/5 (49 Downloads) |
Synopsis Matrix Algebra Useful for Statistics by : Shayle R. Searle
A thoroughly updated guide to matrix algebra and it uses in statistical analysis and features SAS®, MATLAB®, and R throughout This Second Edition addresses matrix algebra that is useful in the statistical analysis of data as well as within statistics as a whole. The material is presented in an explanatory style rather than a formal theorem-proof format and is self-contained. Featuring numerous applied illustrations, numerical examples, and exercises, the book has been updated to include the use of SAS, MATLAB, and R for the execution of matrix computations. In addition, André I. Khuri, who has extensive research and teaching experience in the field, joins this new edition as co-author. The Second Edition also: Contains new coverage on vector spaces and linear transformations and discusses computational aspects of matrices Covers the analysis of balanced linear models using direct products of matrices Analyzes multiresponse linear models where several responses can be of interest Includes extensive use of SAS, MATLAB, and R throughout Contains over 400 examples and exercises to reinforce understanding along with select solutions Includes plentiful new illustrations depicting the importance of geometry as well as historical interludes Matrix Algebra Useful for Statistics, Second Edition is an ideal textbook for advanced undergraduate and first-year graduate level courses in statistics and other related disciplines. The book is also appropriate as a reference for independent readers who use statistics and wish to improve their knowledge of matrix algebra. THE LATE SHAYLE R. SEARLE, PHD, was professor emeritus of biometry at Cornell University. He was the author of Linear Models for Unbalanced Data and Linear Models and co-author of Generalized, Linear, and Mixed Models, Second Edition, Matrix Algebra for Applied Economics, and Variance Components, all published by Wiley. Dr. Searle received the Alexander von Humboldt Senior Scientist Award, and he was an honorary fellow of the Royal Society of New Zealand. ANDRÉ I. KHURI, PHD, is Professor Emeritus of Statistics at the University of Florida. He is the author of Advanced Calculus with Applications in Statistics, Second Edition and co-author of Statistical Tests for Mixed Linear Models, all published by Wiley. Dr. Khuri is a member of numerous academic associations, among them the American Statistical Association and the Institute of Mathematical Statistics.
Author |
: Simo Puntanen |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 504 |
Release |
: 2011-08-24 |
ISBN-10 |
: 9783642104732 |
ISBN-13 |
: 3642104738 |
Rating |
: 4/5 (32 Downloads) |
Synopsis Matrix Tricks for Linear Statistical Models by : Simo Puntanen
In teaching linear statistical models to first-year graduate students or to final-year undergraduate students there is no way to proceed smoothly without matrices and related concepts of linear algebra; their use is really essential. Our experience is that making some particular matrix tricks very familiar to students can substantially increase their insight into linear statistical models (and also multivariate statistical analysis). In matrix algebra, there are handy, sometimes even very simple “tricks” which simplify and clarify the treatment of a problem—both for the student and for the professor. Of course, the concept of a trick is not uniquely defined—by a trick we simply mean here a useful important handy result. In this book we collect together our Top Twenty favourite matrix tricks for linear statistical models.