Mathematics of Quantization and Quantum Fields

Mathematics of Quantization and Quantum Fields
Author :
Publisher : Cambridge University Press
Total Pages : 687
Release :
ISBN-10 : 9781107011113
ISBN-13 : 1107011116
Rating : 4/5 (13 Downloads)

Synopsis Mathematics of Quantization and Quantum Fields by : Jan Dereziński

A unique and definitive review of mathematical aspects of quantization and quantum field theory for graduate students and researchers.

Geometric Quantization in Action

Geometric Quantization in Action
Author :
Publisher : Springer Science & Business Media
Total Pages : 362
Release :
ISBN-10 : 9027714266
ISBN-13 : 9789027714268
Rating : 4/5 (66 Downloads)

Synopsis Geometric Quantization in Action by : N.E. Hurt

Approach your problems from the right It isn't that they can't see the solution. It end and begin with the answers. Then, is that they can't see the problem. one day, perhaps you will fmd the final question. G. K. Chesterton, The Scandal of Father Brown 'The Point of a Pin'. 'The Hermit Clad in Crane Feathers' in R. Van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the 'tree' of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geo metry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical progmmming profit from homotopy theory; Lie algebras are relevant to fIltering; and prediction and electrical engineering can use Stein spaces.

Mathematics of Quantization and Quantum Fields

Mathematics of Quantization and Quantum Fields
Author :
Publisher : Cambridge University Press
Total Pages : 689
Release :
ISBN-10 : 9781009290821
ISBN-13 : 1009290827
Rating : 4/5 (21 Downloads)

Synopsis Mathematics of Quantization and Quantum Fields by : Jan Dereziński

This 2013 book, now OA, offers a definitive review of mathematical aspects of quantization and quantum field theory.

Mathematical Aspects of Quantum Field Theory

Mathematical Aspects of Quantum Field Theory
Author :
Publisher : Cambridge University Press
Total Pages :
Release :
ISBN-10 : 9781139489805
ISBN-13 : 1139489801
Rating : 4/5 (05 Downloads)

Synopsis Mathematical Aspects of Quantum Field Theory by : Edson de Faria

Over the last century quantum field theory has made a significant impact on the formulation and solution of mathematical problems and inspired powerful advances in pure mathematics. However, most accounts are written by physicists, and mathematicians struggle to find clear definitions and statements of the concepts involved. This graduate-level introduction presents the basic ideas and tools from quantum field theory to a mathematical audience. Topics include classical and quantum mechanics, classical field theory, quantization of classical fields, perturbative quantum field theory, renormalization, and the standard model. The material is also accessible to physicists seeking a better understanding of the mathematical background, providing the necessary tools from differential geometry on such topics as connections and gauge fields, vector and spinor bundles, symmetries and group representations.

Quantum Fields and Strings: A Course for Mathematicians

Quantum Fields and Strings: A Course for Mathematicians
Author :
Publisher : American Mathematical Society
Total Pages : 801
Release :
ISBN-10 : 9780821820131
ISBN-13 : 0821820133
Rating : 4/5 (31 Downloads)

Synopsis Quantum Fields and Strings: A Course for Mathematicians by : Pierre Deligne

A run-away bestseller from the moment it hit the market in late 1999. This impressive, thick softcover offers mathematicians and mathematical physicists the opportunity to learn about the beautiful and difficult subjects of quantum field theory and string theory. Cover features an intriguing cartoon that will bring a smile to its intended audience.

Quantum Field Theory for Mathematicians

Quantum Field Theory for Mathematicians
Author :
Publisher : Cambridge University Press
Total Pages : 720
Release :
ISBN-10 : 9780521632652
ISBN-13 : 052163265X
Rating : 4/5 (52 Downloads)

Synopsis Quantum Field Theory for Mathematicians by : Robin Ticciati

This should be a useful reference for anybody with an interest in quantum theory.

Analysis On Fock Spaces And Mathematical Theory Of Quantum Fields: An Introduction To Mathematical Analysis Of Quantum Fields (Second Edition)

Analysis On Fock Spaces And Mathematical Theory Of Quantum Fields: An Introduction To Mathematical Analysis Of Quantum Fields (Second Edition)
Author :
Publisher : World Scientific
Total Pages : 1115
Release :
ISBN-10 : 9789811288456
ISBN-13 : 9811288453
Rating : 4/5 (56 Downloads)

Synopsis Analysis On Fock Spaces And Mathematical Theory Of Quantum Fields: An Introduction To Mathematical Analysis Of Quantum Fields (Second Edition) by : Asao Arai

This book provides a comprehensive introduction to Fock space theory and its applications to mathematical quantum field theory. The first half of the book, Part I, is devoted to detailed descriptions of analysis on abstract Fock spaces (full Fock space, boson Fock space, fermion Fock space and boson-fermion Fock space). It includes the mathematics of second quantization, representation theory of canonical commutation and anti-commutation relations, Bogoliubov transformations, infinite-dimensional Dirac operators and supersymmetric quantum field in an abstract form. The second half of the book, Part II, covers applications of the mathematical theories in Part I to quantum field theory. Four kinds of free quantum fields are constructed and detailed analyses are made. A simple interacting quantum field model, called the van Hove-Miyatake model, is fully analyzed in an abstract form. Moreover, a list of interacting quantum field models is presented and an introductory description to each model is given. In this second edition, a new chapter (Chapter 15) is added to describe a mathematical theory of spontaneous symmetry breaking which is an important subject in modern quantum physics.This book is a good introductory text for graduate students in mathematics or physics who are interested in the mathematical aspects of quantum field theory. It is also well-suited for self-study, providing readers a firm foundation of knowledge and mathematical techniques for more advanced books and current research articles in the field of mathematical analysis on quantum fields. Numerous problems are added to aid readers in developing a deeper understanding of the field.

Geometric Quantization and Quantum Mechanics

Geometric Quantization and Quantum Mechanics
Author :
Publisher : Springer Science & Business Media
Total Pages : 241
Release :
ISBN-10 : 9781461260660
ISBN-13 : 1461260663
Rating : 4/5 (60 Downloads)

Synopsis Geometric Quantization and Quantum Mechanics by : Jedrzej Sniatycki

This book contains a revised and expanded version of the lecture notes of two seminar series given during the academic year 1976/77 at the Department of Mathematics and Statistics of the University of Calgary, and in the summer of 1978 at the Institute of Theoretical Physics of the Technical University Clausthal. The aim of the seminars was to present geometric quantization from the point of view· of its applica tions to quantum mechanics, and to introduce the quantum dynamics of various physical systems as the result of the geometric quantization of the classical dynamics of these systems. The group representation aspects of geometric quantiza tion as well as proofs of the existence and the uniqueness of the introduced structures can be found in the expository papers of Blattner, Kostant, Sternberg and Wolf, and also in the references quoted in these papers. The books of Souriau (1970) and Simms and Woodhouse (1976) present the theory of geometric quantization and its relationship to quantum mech anics. The purpose of the present book is to complement the preceding ones by including new developments of the theory and emphasizing the computations leading to results in quantum mechanics.

Mathematical Quantization

Mathematical Quantization
Author :
Publisher : CRC Press
Total Pages : 297
Release :
ISBN-10 : 9781420036237
ISBN-13 : 1420036238
Rating : 4/5 (37 Downloads)

Synopsis Mathematical Quantization by : Nik Weaver

With a unique approach and presenting an array of new and intriguing topics, Mathematical Quantization offers a survey of operator algebras and related structures from the point of view that these objects are quantizations of classical mathematical structures. This approach makes possible, with minimal mathematical detail, a unified treatment of a

Mathematical Foundations Of Quantum Field Theory

Mathematical Foundations Of Quantum Field Theory
Author :
Publisher : World Scientific
Total Pages : 461
Release :
ISBN-10 : 9789813278653
ISBN-13 : 981327865X
Rating : 4/5 (53 Downloads)

Synopsis Mathematical Foundations Of Quantum Field Theory by : Albert Schwarz

The book is very different from other books devoted to quantum field theory, both in the style of exposition and in the choice of topics. Written for both mathematicians and physicists, the author explains the theoretical formulation with a mixture of rigorous proofs and heuristic arguments; references are given for those who are looking for more details. The author is also careful to avoid ambiguous definitions and statements that can be found in some physics textbooks.In terms of topics, almost all other books are devoted to relativistic quantum field theory, conversely this book is concentrated on the material that does not depend on the assumptions of Lorentz-invariance and/or locality. It contains also a chapter discussing application of methods of quantum field theory to statistical physics, in particular to the derivation of the diagram techniques that appear in thermo-field dynamics and Keldysh formalism. It is not assumed that the reader is familiar with quantum mechanics; the book contains a short introduction to quantum mechanics for mathematicians and an appendix devoted to some mathematical facts used in the book.