Mathematics Behind Fuzzy Logic

Mathematics Behind Fuzzy Logic
Author :
Publisher : Physica
Total Pages : 212
Release :
ISBN-10 : UCSC:32106015489625
ISBN-13 :
Rating : 4/5 (25 Downloads)

Synopsis Mathematics Behind Fuzzy Logic by : Esko Turunen

Many results in fuzzy logic depend on the mathematical structure the truth value set obeys. In this textbook the algebraic foundations of many-valued and fuzzy reasoning are introduced. The book is self-contained, thus no previous knowledge in algebra or in logic is required. It contains 134 exercises with complete answers, and can therefore be used as teaching material at universities for both undergraduated and post-graduated courses. Chapter 1 starts from such basic concepts as order, lattice, equivalence and residuated lattice. It contains a full section on BL-algebras. Chapter 2 concerns MV-algebra and its basic properties. Chapter 3 applies these mathematical results on Lukasiewicz-Pavelka style fuzzy logic, which is studied in details; besides semantics, syntax and completeness of this logic, a lot of examples are given. Chapter 4 shows the connection between fuzzy relations, approximate reasoning and fuzzy IF-THEN rules to residuated lattices.

Fuzzy Logic and Mathematics

Fuzzy Logic and Mathematics
Author :
Publisher : Oxford University Press
Total Pages : 545
Release :
ISBN-10 : 9780190200015
ISBN-13 : 0190200014
Rating : 4/5 (15 Downloads)

Synopsis Fuzzy Logic and Mathematics by : Radim Bělohlávek

The main part of the book is a comprehensive overview of the development of fuzzy logic and its applications in various areas of human affair since its genesis in the mid 1960s. This overview is then employed for assessing the significance of fuzzy logic and mathematics based on fuzzy logic.

Mathematics of Fuzzy Sets and Fuzzy Logic

Mathematics of Fuzzy Sets and Fuzzy Logic
Author :
Publisher : Springer
Total Pages : 281
Release :
ISBN-10 : 9783642352218
ISBN-13 : 3642352219
Rating : 4/5 (18 Downloads)

Synopsis Mathematics of Fuzzy Sets and Fuzzy Logic by : Barnabas Bede

This book presents a mathematically-based introduction into the fascinating topic of Fuzzy Sets and Fuzzy Logic and might be used as textbook at both undergraduate and graduate levels and also as reference guide for mathematician, scientists or engineers who would like to get an insight into Fuzzy Logic. Fuzzy Sets have been introduced by Lotfi Zadeh in 1965 and since then, they have been used in many applications. As a consequence, there is a vast literature on the practical applications of fuzzy sets, while theory has a more modest coverage. The main purpose of the present book is to reduce this gap by providing a theoretical introduction into Fuzzy Sets based on Mathematical Analysis and Approximation Theory. Well-known applications, as for example fuzzy control, are also discussed in this book and placed on new ground, a theoretical foundation. Moreover, a few advanced chapters and several new results are included. These comprise, among others, a new systematic and constructive approach for fuzzy inference systems of Mamdani and Takagi-Sugeno types, that investigates their approximation capability by providing new error estimates.

Mathematics of Fuzzy Sets

Mathematics of Fuzzy Sets
Author :
Publisher : Springer Science & Business Media
Total Pages : 732
Release :
ISBN-10 : 0792383885
ISBN-13 : 9780792383888
Rating : 4/5 (85 Downloads)

Synopsis Mathematics of Fuzzy Sets by : Ulrich Höhle

Mathematics of Fuzzy Sets: Logic, Topology and Measure Theory is a major attempt to provide much-needed coherence for the mathematics of fuzzy sets. Much of this book is new material required to standardize this mathematics, making this volume a reference tool with broad appeal as well as a platform for future research. Fourteen chapters are organized into three parts: mathematical logic and foundations (Chapters 1-2), general topology (Chapters 3-10), and measure and probability theory (Chapters 11-14). Chapter 1 deals with non-classical logics and their syntactic and semantic foundations. Chapter 2 details the lattice-theoretic foundations of image and preimage powerset operators. Chapters 3 and 4 lay down the axiomatic and categorical foundations of general topology using lattice-valued mappings as a fundamental tool. Chapter 3 focuses on the fixed-basis case, including a convergence theory demonstrating the utility of the underlying axioms. Chapter 4 focuses on the more general variable-basis case, providing a categorical unification of locales, fixed-basis topological spaces, and variable-basis compactifications. Chapter 5 relates lattice-valued topologies to probabilistic topological spaces and fuzzy neighborhood spaces. Chapter 6 investigates the important role of separation axioms in lattice-valued topology from the perspective of space embedding and mapping extension problems, while Chapter 7 examines separation axioms from the perspective of Stone-Cech-compactification and Stone-representation theorems. Chapters 8 and 9 introduce the most important concepts and properties of uniformities, including the covering and entourage approaches and the basic theory of precompact or complete [0,1]-valued uniform spaces. Chapter 10 sets out the algebraic, topological, and uniform structures of the fundamentally important fuzzy real line and fuzzy unit interval. Chapter 11 lays the foundations of generalized measure theory and representation by Markov kernels. Chapter 12 develops the important theory of conditioning operators with applications to measure-free conditioning. Chapter 13 presents elements of pseudo-analysis with applications to the Hamilton–Jacobi equation and optimization problems. Chapter 14 surveys briefly the fundamentals of fuzzy random variables which are [0,1]-valued interpretations of random sets.

Mathematical Principles of Fuzzy Logic

Mathematical Principles of Fuzzy Logic
Author :
Publisher : Springer Science & Business Media
Total Pages : 327
Release :
ISBN-10 : 9781461552178
ISBN-13 : 1461552176
Rating : 4/5 (78 Downloads)

Synopsis Mathematical Principles of Fuzzy Logic by : Vilém Novák

Mathematical Principles of Fuzzy Logic provides a systematic study of the formal theory of fuzzy logic. The book is based on logical formalism demonstrating that fuzzy logic is a well-developed logical theory. It includes the theory of functional systems in fuzzy logic, providing an explanation of what can be represented, and how, by formulas of fuzzy logic calculi. It also presents a more general interpretation of fuzzy logic within the environment of other proper categories of fuzzy sets stemming either from the topos theory, or even generalizing the latter. This book presents fuzzy logic as the mathematical theory of vagueness as well as the theory of commonsense human reasoning, based on the use of natural language, the distinguishing feature of which is the vagueness of its semantics.

A First Course in Fuzzy Logic

A First Course in Fuzzy Logic
Author :
Publisher : CRC Press
Total Pages : 436
Release :
ISBN-10 : 9781420057102
ISBN-13 : 1420057103
Rating : 4/5 (02 Downloads)

Synopsis A First Course in Fuzzy Logic by : Hung T. Nguyen

A First Course in Fuzzy Logic, Third Edition continues to provide the ideal introduction to the theory and applications of fuzzy logic. This best-selling text provides a firm mathematical basis for the calculus of fuzzy concepts necessary for designing intelligent systems and a solid background for readers to pursue further studies and real-world a

Metamathematics of Fuzzy Logic

Metamathematics of Fuzzy Logic
Author :
Publisher : Springer Science & Business Media
Total Pages : 304
Release :
ISBN-10 : 9789401153003
ISBN-13 : 9401153000
Rating : 4/5 (03 Downloads)

Synopsis Metamathematics of Fuzzy Logic by : Petr Hájek

This book presents a systematic treatment of deductive aspects and structures of fuzzy logic understood as many valued logic sui generis. It aims to show that fuzzy logic as a logic of imprecise (vague) propositions does have well-developed formal foundations and that most things usually named ‘fuzzy inference’ can be naturally understood as logical deduction. It is for mathematicians, logicians, computer scientists, specialists in artificial intelligence and knowledge engineering, and developers of fuzzy logic.

Recent Advances in Intuitionistic Fuzzy Logic Systems and Mathematics

Recent Advances in Intuitionistic Fuzzy Logic Systems and Mathematics
Author :
Publisher : Springer Nature
Total Pages : 281
Release :
ISBN-10 : 9783030539290
ISBN-13 : 3030539296
Rating : 4/5 (90 Downloads)

Synopsis Recent Advances in Intuitionistic Fuzzy Logic Systems and Mathematics by : Said Melliani

This book provides an overview of the state-of-the-art in both the theory and methods of intuitionistic fuzzy logic, partial differential equations and numerical methods in informatics. Covering topics such as fuzzy intuitionistic Hilbert spaces, intuitionistic fuzzy differential equations, fuzzy intuitionistic metric spaces, and numerical methods for differential equations, it discusses applications such as fuzzy real-time scheduling, intelligent control, diagnostics and time series prediction. The book features selected contributions presented at the 6th international congress of the Moroccan Applied Mathematics Society, which took place at Sultan Moulay Slimane University Beni Mellal, Morocco, from 7 to 9 November 2019.

Mathematical Modeling using Fuzzy Logic

Mathematical Modeling using Fuzzy Logic
Author :
Publisher : CRC Press
Total Pages : 195
Release :
ISBN-10 : 9780429751714
ISBN-13 : 0429751710
Rating : 4/5 (14 Downloads)

Synopsis Mathematical Modeling using Fuzzy Logic by : Abhijit Pandit

Mathematical Modeling using Fuzzy Logic has been a dream project for the author. Fuzzy logic provides a unique method of approximate reasoning in an imperfect world. This text is a bridge to the principles of fuzzy logic through an application-focused approach to selected topics in engineering and management. The many examples point to the richer solutions obtained through fuzzy logic and to the possibilities of much wider applications. There are relatively very few texts available at present in fuzzy logic applications. The style and content of this text is complementary to those already available. New areas of application, like application of fuzzy logic in modeling of sustainability, are presented in a graded approach in which the underlying concepts are first described. The text is broadly divided into two parts: the first treats processes, materials, and system applications related to fuzzy logic, and the second delves into the modeling of sustainability with the help of fuzzy logic. This book offers comprehensive coverage of the most essential topics, including: Treating processes, materials, system applications related to fuzzy logic Highlighting new areas of application of fuzzy logic Identifying possibilities of much wider applications of fuzzy logic Modeling of sustainability with the help of fuzzy logic The level enables a selection of the text to be made for the substance of undergraduate-, graduate-, and postgraduate-level courses. There is also sufficient volume and quality for the basis of a postgraduate course. A more restricted and judicious selection can provide the material for a professional short course and various university-level courses.

Fuzzy Mathematics in Economics and Engineering

Fuzzy Mathematics in Economics and Engineering
Author :
Publisher : Physica
Total Pages : 267
Release :
ISBN-10 : 9783790817959
ISBN-13 : 3790817953
Rating : 4/5 (59 Downloads)

Synopsis Fuzzy Mathematics in Economics and Engineering by : James J. Buckley

The book aims at surveying results in the application of fuzzy sets and fuzzy logic to economics and engineering. New results include fuzzy non-linear regression, fully fuzzified linear programming, fuzzy multi-period control, fuzzy network analysis, each using an evolutionary algorithm; fuzzy queuing decision analysis using possibility theory; fuzzy differential equations; fuzzy difference equations; fuzzy partial differential equations; fuzzy eigenvalues based on an evolutionary algorithm; fuzzy hierarchical analysis using an evolutionary algorithm; fuzzy integral equations. Other important topics covered are fuzzy input-output analysis; fuzzy mathematics of finance; fuzzy PERT (project evaluation and review technique). No previous knowledge of fuzzy sets is needed. The mathematical background is assumed to be elementary calculus.