Mathematical Topics Between Classical And Quantum Mechanics
Download Mathematical Topics Between Classical And Quantum Mechanics full books in PDF, epub, and Kindle. Read online free Mathematical Topics Between Classical And Quantum Mechanics ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Nicholas P. Landsman |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 547 |
Release |
: 2012-12-06 |
ISBN-10 |
: 9781461216803 |
ISBN-13 |
: 146121680X |
Rating |
: 4/5 (03 Downloads) |
Synopsis Mathematical Topics Between Classical and Quantum Mechanics by : Nicholas P. Landsman
This monograph draws on two traditions: the algebraic formulation of quantum mechanics as well as quantum field theory, and the geometric theory of classical mechanics. These are combined in a unified treatment of the theory of Poisson algebras of observables and pure state spaces with a transition probability, which leads on to a discussion of the theory of quantization and the classical limit from this perspective. A prototype of quantization comes from the analogy between the C*- algebra of a Lie groupoid and the Poisson algebra of the corresponding Lie algebroid. The parallel between reduction of symplectic manifolds in classical mechanics and induced representations of groups and C*- algebras in quantum mechanics plays an equally important role. Examples from physics include constrained quantization, curved spaces, magnetic monopoles, gauge theories, massless particles, and $theta$- vacua. Accessible to mathematicians with some prior knowledge of classical and quantum mechanics, and to mathematical physicists and theoretical physicists with some background in functional analysis.
Author |
: Frederick W. Byron |
Publisher |
: Courier Corporation |
Total Pages |
: 674 |
Release |
: 2012-04-26 |
ISBN-10 |
: 9780486135069 |
ISBN-13 |
: 0486135063 |
Rating |
: 4/5 (69 Downloads) |
Synopsis Mathematics of Classical and Quantum Physics by : Frederick W. Byron
Graduate-level text offers unified treatment of mathematics applicable to many branches of physics. Theory of vector spaces, analytic function theory, theory of integral equations, group theory, and more. Many problems. Bibliography.
Author |
: Stephen J. Gustafson |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 380 |
Release |
: 2011-09-24 |
ISBN-10 |
: 9783642218668 |
ISBN-13 |
: 3642218660 |
Rating |
: 4/5 (68 Downloads) |
Synopsis Mathematical Concepts of Quantum Mechanics by : Stephen J. Gustafson
The book gives a streamlined introduction to quantum mechanics while describing the basic mathematical structures underpinning this discipline. Starting with an overview of key physical experiments illustrating the origin of the physical foundations, the book proceeds with a description of the basic notions of quantum mechanics and their mathematical content. It then makes its way to topics of current interest, specifically those in which mathematics plays an important role. The more advanced topics presented include many-body systems, modern perturbation theory, path integrals, the theory of resonances, quantum statistics, mean-field theory, second quantization, the theory of radiation (non-relativistic quantum electrodynamics), and the renormalization group. With different selections of chapters, the book can serve as a text for an introductory, intermediate, or advanced course in quantum mechanics. The last four chapters could also serve as an introductory course in quantum field theory.
Author |
: Leon Armenovich Takhtadzhi͡an |
Publisher |
: American Mathematical Soc. |
Total Pages |
: 410 |
Release |
: 2008 |
ISBN-10 |
: 9780821846308 |
ISBN-13 |
: 0821846302 |
Rating |
: 4/5 (08 Downloads) |
Synopsis Quantum Mechanics for Mathematicians by : Leon Armenovich Takhtadzhi͡an
Presents a comprehensive treatment of quantum mechanics from a mathematics perspective. Including traditional topics, like classical mechanics, mathematical foundations of quantum mechanics, quantization, and the Schrodinger equation, this book gives a mathematical treatment of systems of identical particles with spin.
Author |
: Brian C. Hall |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 566 |
Release |
: 2013-06-19 |
ISBN-10 |
: 9781461471165 |
ISBN-13 |
: 1461471168 |
Rating |
: 4/5 (65 Downloads) |
Synopsis Quantum Theory for Mathematicians by : Brian C. Hall
Although ideas from quantum physics play an important role in many parts of modern mathematics, there are few books about quantum mechanics aimed at mathematicians. This book introduces the main ideas of quantum mechanics in language familiar to mathematicians. Readers with little prior exposure to physics will enjoy the book's conversational tone as they delve into such topics as the Hilbert space approach to quantum theory; the Schrödinger equation in one space dimension; the Spectral Theorem for bounded and unbounded self-adjoint operators; the Stone–von Neumann Theorem; the Wentzel–Kramers–Brillouin approximation; the role of Lie groups and Lie algebras in quantum mechanics; and the path-integral approach to quantum mechanics. The numerous exercises at the end of each chapter make the book suitable for both graduate courses and independent study. Most of the text is accessible to graduate students in mathematics who have had a first course in real analysis, covering the basics of L2 spaces and Hilbert spaces. The final chapters introduce readers who are familiar with the theory of manifolds to more advanced topics, including geometric quantization.
Author |
: Michael Spivak |
Publisher |
: |
Total Pages |
: 733 |
Release |
: 2010 |
ISBN-10 |
: 0914098322 |
ISBN-13 |
: 9780914098324 |
Rating |
: 4/5 (22 Downloads) |
Synopsis Physics for Mathematicians by : Michael Spivak
Author |
: L. D. Faddeev |
Publisher |
: American Mathematical Soc. |
Total Pages |
: 250 |
Release |
: 2009 |
ISBN-10 |
: 9780821846995 |
ISBN-13 |
: 082184699X |
Rating |
: 4/5 (95 Downloads) |
Synopsis Lectures on Quantum Mechanics for Mathematics Students by : L. D. Faddeev
Describes the relation between classical and quantum mechanics. This book contains a discussion of problems related to group representation theory and to scattering theory. It intends to give a mathematically oriented student the opportunity to grasp the main points of quantum theory in a mathematical framework.
Author |
: V.I. Arnol'd |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 530 |
Release |
: 2013-04-09 |
ISBN-10 |
: 9781475720631 |
ISBN-13 |
: 1475720637 |
Rating |
: 4/5 (31 Downloads) |
Synopsis Mathematical Methods of Classical Mechanics by : V.I. Arnol'd
This book constructs the mathematical apparatus of classical mechanics from the beginning, examining basic problems in dynamics like the theory of oscillations and the Hamiltonian formalism. The author emphasizes geometrical considerations and includes phase spaces and flows, vector fields, and Lie groups. Discussion includes qualitative methods of the theory of dynamical systems and of asymptotic methods like averaging and adiabatic invariance.
Author |
: Dariusz Chruscinski |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 346 |
Release |
: 2012-12-06 |
ISBN-10 |
: 9780817681760 |
ISBN-13 |
: 0817681760 |
Rating |
: 4/5 (60 Downloads) |
Synopsis Geometric Phases in Classical and Quantum Mechanics by : Dariusz Chruscinski
Several well-established geometric and topological methods are used in this work in an application to a beautiful physical phenomenon known as the geometric phase. This book examines the geometric phase, bringing together different physical phenomena under a unified mathematical scheme. The material is presented so that graduate students and researchers in applied mathematics and physics with an understanding of classical and quantum mechanics can handle the text.
Author |
: Martin C. Gutzwiller |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 445 |
Release |
: 2013-11-27 |
ISBN-10 |
: 9781461209836 |
ISBN-13 |
: 1461209838 |
Rating |
: 4/5 (36 Downloads) |
Synopsis Chaos in Classical and Quantum Mechanics by : Martin C. Gutzwiller
Describes the chaos apparent in simple mechanical systems with the goal of elucidating the connections between classical and quantum mechanics. It develops the relevant ideas of the last two decades via geometric intuition rather than algebraic manipulation. The historical and cultural background against which these scientific developments have occurred is depicted, and realistic examples are discussed in detail. This book enables entry-level graduate students to tackle fresh problems in this rich field.