Mathematical Methods in Quantum Mechanics

Mathematical Methods in Quantum Mechanics
Author :
Publisher : American Mathematical Soc.
Total Pages : 322
Release :
ISBN-10 : 9780821846605
ISBN-13 : 0821846604
Rating : 4/5 (05 Downloads)

Synopsis Mathematical Methods in Quantum Mechanics by : Gerald Teschl

Quantum mechanics and the theory of operators on Hilbert space have been deeply linked since their beginnings in the early twentieth century. States of a quantum system correspond to certain elements of the configuration space and observables correspond to certain operators on the space. This book is a brief, but self-contained, introduction to the mathematical methods of quantum mechanics, with a view towards applications to Schrodinger operators. Part 1 of the book is a concise introduction to the spectral theory of unbounded operators. Only those topics that will be needed for later applications are covered. The spectral theorem is a central topic in this approach and is introduced at an early stage. Part 2 starts with the free Schrodinger equation and computes the free resolvent and time evolution. Position, momentum, and angular momentum are discussed via algebraic methods. Various mathematical methods are developed, which are then used to compute the spectrum of the hydrogen atom. Further topics include the nondegeneracy of the ground state, spectra of atoms, and scattering theory. This book serves as a self-contained introduction to spectral theory of unbounded operators in Hilbert space with full proofs and minimal prerequisites: Only a solid knowledge of advanced calculus and a one-semester introduction to complex analysis are required. In particular, no functional analysis and no Lebesgue integration theory are assumed. It develops the mathematical tools necessary to prove some key results in nonrelativistic quantum mechanics. Mathematical Methods in Quantum Mechanics is intended for beginning graduate students in both mathematics and physics and provides a solid foundation for reading more advanced books and current research literature. It is well suited for self-study and includes numerous exercises (many with hints).

Quantum Mechanics for Mathematicians

Quantum Mechanics for Mathematicians
Author :
Publisher : American Mathematical Soc.
Total Pages : 410
Release :
ISBN-10 : 9780821846308
ISBN-13 : 0821846302
Rating : 4/5 (08 Downloads)

Synopsis Quantum Mechanics for Mathematicians by : Leon Armenovich Takhtadzhi͡an

Presents a comprehensive treatment of quantum mechanics from a mathematics perspective. Including traditional topics, like classical mechanics, mathematical foundations of quantum mechanics, quantization, and the Schrodinger equation, this book gives a mathematical treatment of systems of identical particles with spin.

Lectures on Quantum Mechanics for Mathematics Students

Lectures on Quantum Mechanics for Mathematics Students
Author :
Publisher : American Mathematical Soc.
Total Pages : 250
Release :
ISBN-10 : 9780821846995
ISBN-13 : 082184699X
Rating : 4/5 (95 Downloads)

Synopsis Lectures on Quantum Mechanics for Mathematics Students by : L. D. Faddeev

Describes the relation between classical and quantum mechanics. This book contains a discussion of problems related to group representation theory and to scattering theory. It intends to give a mathematically oriented student the opportunity to grasp the main points of quantum theory in a mathematical framework.

Mathematical Foundations of Quantum Mechanics

Mathematical Foundations of Quantum Mechanics
Author :
Publisher : Princeton University Press
Total Pages : 462
Release :
ISBN-10 : 0691028931
ISBN-13 : 9780691028934
Rating : 4/5 (31 Downloads)

Synopsis Mathematical Foundations of Quantum Mechanics by : John von Neumann

A revolutionary book that for the first time provided a rigorous mathematical framework for quantum mechanics. -- Google books

Mathematical Horizons for Quantum Physics

Mathematical Horizons for Quantum Physics
Author :
Publisher : World Scientific
Total Pages : 221
Release :
ISBN-10 : 9789814313322
ISBN-13 : 9814313327
Rating : 4/5 (22 Downloads)

Synopsis Mathematical Horizons for Quantum Physics by : Huzihiro Araki

Control of the molecular alignment or orientation by laser pulses / Arne Keller -- Quantum computing and devices : A short introduction / Zhigang Zhang, Viswanath Ramakrishna and Goong Chen -- Dynamics of mixed classical-quantum systems, geometric quantization and coherent states / Hans-Rudolf Jauslin and Dominique Sugny -- Quantum memories as open systems / Robert Alicki -- Two mathematical problems in quantum information theory / Alexander S. Holevo -- Dissipatively induced bipartite entanglement / Fabio Benatti -- Scattering in nonrelativistic quantum field theory / Jan Derezinski -- Mathematical theory of atoms and molecules / Volker Bach

Mathematics of Classical and Quantum Physics

Mathematics of Classical and Quantum Physics
Author :
Publisher : Courier Corporation
Total Pages : 674
Release :
ISBN-10 : 9780486135069
ISBN-13 : 0486135063
Rating : 4/5 (69 Downloads)

Synopsis Mathematics of Classical and Quantum Physics by : Frederick W. Byron

Graduate-level text offers unified treatment of mathematics applicable to many branches of physics. Theory of vector spaces, analytic function theory, theory of integral equations, group theory, and more. Many problems. Bibliography.

Mathematical Results in Quantum Mechanics

Mathematical Results in Quantum Mechanics
Author :
Publisher : World Scientific
Total Pages : 312
Release :
ISBN-10 : 9789812832382
ISBN-13 : 9812832386
Rating : 4/5 (82 Downloads)

Synopsis Mathematical Results in Quantum Mechanics by : Radu Purice

The 10th Quantum Mathematics International Conference (Qmath10) gave an opportunity to bring together specialists interested in that part of mathematical physics which is in close connection with various aspects of quantum theory. It was also meant to introduce young scientists and new tendencies in the field.This collection of carefully selected papers aims to reflect recent techniques and results on SchrAdinger operators with magnetic fields, random SchrAdinger operators, condensed matter and open systems, pseudo-differential operators and semiclassical analysis, quantum field theory and relativistic quantum mechanics, quantum information, and much more. The book serves as a concise and well-documented tool for the more experimented scientists, as well as a research guide for postgraduate students.

Fundamental Mathematical Structures of Quantum Theory

Fundamental Mathematical Structures of Quantum Theory
Author :
Publisher : Springer
Total Pages : 345
Release :
ISBN-10 : 9783030183462
ISBN-13 : 3030183467
Rating : 4/5 (62 Downloads)

Synopsis Fundamental Mathematical Structures of Quantum Theory by : Valter Moretti

This textbook presents in a concise and self-contained way the advanced fundamental mathematical structures in quantum theory. It is based on lectures prepared for a 6 months course for MSc students. The reader is introduced to the beautiful interconnection between logic, lattice theory, general probability theory, and general spectral theory including the basic theory of von Neumann algebras and of the algebraic formulation, naturally arising in the study of the mathematical machinery of quantum theories. Some general results concerning hidden-variable interpretations of QM such as Gleason's and the Kochen-Specker theorems and the related notions of realism and non-contextuality are carefully discussed. This is done also in relation with the famous Bell (BCHSH) inequality concerning local causality. Written in a didactic style, this book includes many examples and solved exercises. The work is organized as follows. Chapter 1 reviews some elementary facts and properties of quantum systems. Chapter 2 and 3 present the main results of spectral analysis in complex Hilbert spaces. Chapter 4 introduces the point of view of the orthomodular lattices' theory. Quantum theory form this perspective turns out to the probability measure theory on the non-Boolean lattice of elementary observables and Gleason's theorem characterizes all these measures. Chapter 5 deals with some philosophical and interpretative aspects of quantum theory like hidden-variable formulations of QM. The Kochen-Specker theorem and its implications are analyzed also in relation BCHSH inequality, entanglement, realism, locality, and non-contextuality. Chapter 6 focuses on the algebra of observables also in the presence of superselection rules introducing the notion of von Neumann algebra. Chapter 7 offers the idea of (groups of) quantum symmetry, in particular, illustrated in terms of Wigner and Kadison theorems. Chapter 8 deals with the elementary ideas and results of the so called algebraic formulation of quantum theories in terms of both *-algebras and C*-algebras. This book should appeal to a dual readership: on one hand mathematicians that wish to acquire the tools that unlock the physical aspects of quantum theories; on the other physicists eager to solidify their understanding of the mathematical scaffolding of quantum theories.

Physics and Mathematics of Quantum Many-Body Systems

Physics and Mathematics of Quantum Many-Body Systems
Author :
Publisher : Springer Nature
Total Pages : 534
Release :
ISBN-10 : 9783030412654
ISBN-13 : 3030412652
Rating : 4/5 (54 Downloads)

Synopsis Physics and Mathematics of Quantum Many-Body Systems by : Hal Tasaki

This book is a self-contained advanced textbook on the mathematical-physical aspects of quantum many-body systems, which begins with a pedagogical presentation of the necessary background information before moving on to subjects of active research, including topological phases of matter. The book explores in detail selected topics in quantum spin systems and lattice electron systems, namely, long-range order and spontaneous symmetry breaking in the antiferromagnetic Heisenberg model in two or higher dimensions (Part I), Haldane phenomena in antiferromagnetic quantum spin chains and related topics in topological phases of quantum matter (Part II), and the origin of magnetism in various versions of the Hubbard model (Part III). Each of these topics represents certain nontrivial phenomena or features that are invariably encountered in a variety of quantum many-body systems, including quantum field theory, condensed matter systems, cold atoms, and artificial quantum systems designed for future quantum computers. The book’s main focus is on universal properties of quantum many-body systems. The book includes roughly 50 problems with detailed solutions. The reader only requires elementary linear algebra and calculus to comprehend the material and work through the problems. Given its scope and format, the book is suitable both for self-study and as a textbook for graduate or advanced undergraduate classes.

Geometric Quantization and Quantum Mechanics

Geometric Quantization and Quantum Mechanics
Author :
Publisher : Springer Science & Business Media
Total Pages : 241
Release :
ISBN-10 : 9781461260660
ISBN-13 : 1461260663
Rating : 4/5 (60 Downloads)

Synopsis Geometric Quantization and Quantum Mechanics by : Jedrzej Sniatycki

This book contains a revised and expanded version of the lecture notes of two seminar series given during the academic year 1976/77 at the Department of Mathematics and Statistics of the University of Calgary, and in the summer of 1978 at the Institute of Theoretical Physics of the Technical University Clausthal. The aim of the seminars was to present geometric quantization from the point of view· of its applica tions to quantum mechanics, and to introduce the quantum dynamics of various physical systems as the result of the geometric quantization of the classical dynamics of these systems. The group representation aspects of geometric quantiza tion as well as proofs of the existence and the uniqueness of the introduced structures can be found in the expository papers of Blattner, Kostant, Sternberg and Wolf, and also in the references quoted in these papers. The books of Souriau (1970) and Simms and Woodhouse (1976) present the theory of geometric quantization and its relationship to quantum mech anics. The purpose of the present book is to complement the preceding ones by including new developments of the theory and emphasizing the computations leading to results in quantum mechanics.