Mathematical Basics of Motion and Deformation in Computer Graphics

Mathematical Basics of Motion and Deformation in Computer Graphics
Author :
Publisher : Morgan & Claypool Publishers
Total Pages : 97
Release :
ISBN-10 : 9781627059848
ISBN-13 : 1627059849
Rating : 4/5 (48 Downloads)

Synopsis Mathematical Basics of Motion and Deformation in Computer Graphics by : Ken Anjyo

This synthesis lecture presents an intuitive introduction to the mathematics of motion and deformation in computer graphics. Starting with familiar concepts in graphics, such as Euler angles, quaternions, and affine transformations, we illustrate that a mathematical theory behind these concepts enables us to develop the techniques for efficient/effective creation of computer animation. This book, therefore, serves as a good guidepost to mathematics (differential geometry and Lie theory) for students of geometric modeling and animation in computer graphics. Experienced developers and researchers will also benefit from this book, since it gives a comprehensive overview of mathematical approaches that are particularly useful in character modeling, deformation, and animation.

Mathematical Basics of Motion and Deformation in Computer Graphics, Second Edition

Mathematical Basics of Motion and Deformation in Computer Graphics, Second Edition
Author :
Publisher : Springer Nature
Total Pages : 79
Release :
ISBN-10 : 9783031025921
ISBN-13 : 303102592X
Rating : 4/5 (21 Downloads)

Synopsis Mathematical Basics of Motion and Deformation in Computer Graphics, Second Edition by : Ken Anjyo

This synthesis lecture presents an intuitive introduction to the mathematics of motion and deformation in computer graphics. Starting with familiar concepts in graphics, such as Euler angles, quaternions, and affine transformations, we illustrate that a mathematical theory behind these concepts enables us to develop the techniques for efficient/effective creation of computer animation. This book, therefore, serves as a good guidepost to mathematics (differential geometry and Lie theory) for students of geometric modeling and animation in computer graphics. Experienced developers and researchers will also benefit from this book, since it gives a comprehensive overview of mathematical approaches that are particularly useful in character modeling, deformation, and animation.

Mathematical Basics of Motion and Deformation in Computer Graphics

Mathematical Basics of Motion and Deformation in Computer Graphics
Author :
Publisher : Morgan & Claypool
Total Pages : 95
Release :
ISBN-10 : 1627056971
ISBN-13 : 9781627056977
Rating : 4/5 (71 Downloads)

Synopsis Mathematical Basics of Motion and Deformation in Computer Graphics by : Ken Anjyo

This synthesis lecture presents an intuitive introduction to the mathematics of motion and deformation in computer graphics. Starting with familiar concepts in graphics, such as Euler angles, quaternions, and affine transformations, we illustrate that a mathematical theory behind these concepts enables us to develop the techniques for efficient/effective creation of computer animation. This book, therefore, serves as a good guidepost to mathematics (differential geometry and Lie theory) for students of geometric modeling and animation in computer graphics. Experienced developers and researchers will also benefit from this book, since it gives a comprehensive overview of mathematical approaches that are particularly useful in character modeling, deformation, and animation.

Cloth Simulation for Computer Graphics

Cloth Simulation for Computer Graphics
Author :
Publisher : Springer Nature
Total Pages : 110
Release :
ISBN-10 : 9783031025976
ISBN-13 : 3031025970
Rating : 4/5 (76 Downloads)

Synopsis Cloth Simulation for Computer Graphics by : Tuur Stuyck

Physics-based animation is commonplace in animated feature films and even special effects for live-action movies. Think about a recent movie and there will be some sort of special effects such as explosions or virtual worlds. Cloth simulation is no different and is ubiquitous because most virtual characters (hopefully!) wear some sort of clothing. The focus of this book is physics-based cloth simulation. We start by providing background information and discuss a range of applications. This book provides explanations of multiple cloth simulation techniques. More specifically, we start with the most simple explicitly integrated mass-spring model and gradually work our way up to more complex and commonly used implicitly integrated continuum techniques in state-of-the-art implementations. We give an intuitive explanation of the techniques and give additional information on how to efficiently implement them on a computer. This book discusses explicit and implicit integration schemes for cloth simulation modeled with mass-spring systems. In addition to this simple model, we explain the more advanced continuum-inspired cloth model introduced in the seminal work of Baraff and Witkin [1998]. This method is commonly used in industry. We also explain recent work by Liu et al. [2013] that provides a technique to obtain fast simulations. In addition to these simulation approaches, we discuss how cloth simulations can be art directed for stylized animations based on the work of Wojan et al. [2016]. Controllability is an essential component of a feature animation film production pipeline. We conclude by pointing the reader to more advanced techniques.

Design, Representations, and Processing for Additive Manufacturing

Design, Representations, and Processing for Additive Manufacturing
Author :
Publisher : Springer Nature
Total Pages : 136
Release :
ISBN-10 : 9783031025969
ISBN-13 : 3031025962
Rating : 4/5 (69 Downloads)

Synopsis Design, Representations, and Processing for Additive Manufacturing by : Marco Attene

The wide diffusion of 3D printing technologies continuously calls for effective solutions for designing and fabricating objects of increasing complexity. The so called "computational fabrication" pipeline comprises all the steps necessary to turn a design idea into a physical object, and this book describes the most recent advancements in the two fundamental phases along this pipeline: design and process planning. We examine recent systems in the computer graphics community that allow us to take a design idea from conception to a digital model, and classify algorithms that are necessary to turn such a digital model into an appropriate sequence of machining instructions.

Virtual Material Acquisition and Representation for Computer Graphics

Virtual Material Acquisition and Representation for Computer Graphics
Author :
Publisher : Springer Nature
Total Pages : 93
Release :
ISBN-10 : 9783031025952
ISBN-13 : 3031025954
Rating : 4/5 (52 Downloads)

Synopsis Virtual Material Acquisition and Representation for Computer Graphics by : Dar'ya Guarnera

This book provides beginners in computer graphics and related fields a guide to the concepts, models, and technologies for realistic rendering of material appearance. It provides a complete and thorough overview of reflectance models and acquisition setups, along with providing a selection of the available tools to explore, visualize, and render the reflectance data. Reflectance models are under continuous development, since there is still no straightforward solution for general material representations. Every reflectance model is specific to a class of materials. Hence, each has strengths and weaknesses, which the book highlights in order to help the reader choose the most suitable model for any purpose. The overview of the acquisition setups will provide guidance to a reader who needs to acquire virtual materials and will help them to understand which measurement setup can be useful for a particular purpose, while taking into account the performance and the expected cost derived from the required components. The book also describes several recent open source software solutions, useful for visualizing and manipulating a wide variety of reflectance models and data.

Computer Animation

Computer Animation
Author :
Publisher : Elsevier
Total Pages : 626
Release :
ISBN-10 : 9780080553856
ISBN-13 : 0080553850
Rating : 4/5 (56 Downloads)

Synopsis Computer Animation by : Rick Parent

Driven by the demands of research and the entertainment industry, the techniques of animation are pushed to render increasingly complex objects with ever-greater life-like appearance and motion. This rapid progression of knowledge and technique impacts professional developers, as well as students. Developers must maintain their understanding of conceptual foundations, while their animation tools become ever more complex and specialized. The second edition of Rick Parent's Computer Animation is an excellent resource for the designers who must meet this challenge. The first edition established its reputation as the best technically oriented animation text. This new edition focuses on the many recent developments in animation technology, including fluid animation, human figure animation, and soft body animation. The new edition revises and expands coverage of topics such as quaternions, natural phenomenon, facial animation, and inverse kinematics. The book includes up-to-date discussions of Maya scripting and the Maya C++ API, programming on real-time 3D graphics hardware, collision detection, motion capture, and motion capture data processing. - New up-to-the-moment coverage of hot topics like real-time 3D graphics, collision detection, fluid and soft-body animation and more! - Companion site with animation clips drawn from research & entertainment and code samples - Describes the mathematical and algorithmic foundations of animation that provide the animator with a deep understanding and control of technique

Stochastic Partial Differential Equations for Computer Vision with Uncertain Data

Stochastic Partial Differential Equations for Computer Vision with Uncertain Data
Author :
Publisher : Springer Nature
Total Pages : 150
Release :
ISBN-10 : 9783031025945
ISBN-13 : 3031025946
Rating : 4/5 (45 Downloads)

Synopsis Stochastic Partial Differential Equations for Computer Vision with Uncertain Data by : Tobias Preusser

In image processing and computer vision applications such as medical or scientific image data analysis, as well as in industrial scenarios, images are used as input measurement data. It is good scientific practice that proper measurements must be equipped with error and uncertainty estimates. For many applications, not only the measured values but also their errors and uncertainties, should be—and more and more frequently are—taken into account for further processing. This error and uncertainty propagation must be done for every processing step such that the final result comes with a reliable precision estimate. The goal of this book is to introduce the reader to the recent advances from the field of uncertainty quantification and error propagation for computer vision, image processing, and image analysis that are based on partial differential equations (PDEs). It presents a concept with which error propagation and sensitivity analysis can be formulated with a set of basic operations. The approach discussed in this book has the potential for application in all areas of quantitative computer vision, image processing, and image analysis. In particular, it might help medical imaging finally become a scientific discipline that is characterized by the classical paradigms of observation, measurement, and error awareness. This book is comprised of eight chapters. After an introduction to the goals of the book (Chapter 1), we present a brief review of PDEs and their numerical treatment (Chapter 2), PDE-based image processing (Chapter 3), and the numerics of stochastic PDEs (Chapter 4). We then proceed to define the concept of stochastic images (Chapter 5), describe how to accomplish image processing and computer vision with stochastic images (Chapter 6), and demonstrate the use of these principles for accomplishing sensitivity analysis (Chapter 7). Chapter 8 concludes the book and highlights new research topics for the future.

Calculus for Computer Graphics

Calculus for Computer Graphics
Author :
Publisher : Springer Nature
Total Pages : 387
Release :
ISBN-10 : 9783031281174
ISBN-13 : 3031281179
Rating : 4/5 (74 Downloads)

Synopsis Calculus for Computer Graphics by : John Vince

Students studying different branches of computer graphics need to be familiar with geometry, matrices, vectors, rotation transforms, quaternions, curves and surfaces. And as computer graphics software becomes increasingly sophisticated, calculus is also being used to resolve its associated problems. In this 3rd edition, the author extends the scope of the original book to include vector differential operators and differential equations and draws upon his experience in teaching mathematics to undergraduates to make calculus appear no more challenging than any other branch of mathematics. He introduces the subject by examining how functions depend upon their independent variables, and then derives the appropriate mathematical underpinning and definitions. This gives rise to a function’s derivative and its antiderivative, or integral. Using the idea of limits, the reader is introduced to derivatives and integrals of many common functions. Other chapters address higher-order derivatives, partial derivatives, Jacobians, vector-based functions, single, double and triple integrals, with numerous worked examples and almost two hundred colour illustrations. This book complements the author’s other books on mathematics for computer graphics and assumes that the reader is familiar with everyday algebra, trigonometry, vectors and determinants. After studying this book, the reader should understand calculus and its application within the world of computer graphics, games and animation.

An Introduction to Laplacian Spectral Distances and Kernels

An Introduction to Laplacian Spectral Distances and Kernels
Author :
Publisher : Springer Nature
Total Pages : 120
Release :
ISBN-10 : 9783031025938
ISBN-13 : 3031025938
Rating : 4/5 (38 Downloads)

Synopsis An Introduction to Laplacian Spectral Distances and Kernels by : Giuseppe Patanè

In geometry processing and shape analysis, several applications have been addressed through the properties of the Laplacian spectral kernels and distances, such as commute time, biharmonic, diffusion, and wave distances. Within this context, this book is intended to provide a common background on the definition and computation of the Laplacian spectral kernels and distances for geometry processing and shape analysis. To this end, we define a unified representation of the isotropic and anisotropic discrete Laplacian operator on surfaces and volumes; then, we introduce the associated differential equations, i.e., the harmonic equation, the Laplacian eigenproblem, and the heat equation. Filtering the Laplacian spectrum, we introduce the Laplacian spectral distances, which generalize the commute-time, biharmonic, diffusion, and wave distances, and their discretization in terms of the Laplacian spectrum. As main applications, we discuss the design of smooth functions and the Laplacian smoothing of noisy scalar functions. All the reviewed numerical schemes are discussed and compared in terms of robustness, approximation accuracy, and computational cost, thus supporting the reader in the selection of the most appropriate with respect to shape representation, computational resources, and target application.