Mathematical Aspects of Mixing Times in Markov Chains

Mathematical Aspects of Mixing Times in Markov Chains
Author :
Publisher : Now Publishers Inc
Total Pages : 133
Release :
ISBN-10 : 9781933019291
ISBN-13 : 1933019298
Rating : 4/5 (91 Downloads)

Synopsis Mathematical Aspects of Mixing Times in Markov Chains by : Ravi R. Montenegro

Mathematical Aspects of Mixing Times in Markov Chains is a comprehensive, well-written review of the subject that will be of interest to researchers and students in computer and mathematical sciences.

Markov Chains and Stochastic Stability

Markov Chains and Stochastic Stability
Author :
Publisher : Cambridge University Press
Total Pages : 623
Release :
ISBN-10 : 9780521731829
ISBN-13 : 0521731828
Rating : 4/5 (29 Downloads)

Synopsis Markov Chains and Stochastic Stability by : Sean Meyn

New up-to-date edition of this influential classic on Markov chains in general state spaces. Proofs are rigorous and concise, the range of applications is broad and knowledgeable, and key ideas are accessible to practitioners with limited mathematical background. New commentary by Sean Meyn, including updated references, reflects developments since 1996.

Introduction to Markov Chains

Introduction to Markov Chains
Author :
Publisher : Vieweg+Teubner Verlag
Total Pages : 237
Release :
ISBN-10 : 9783322901576
ISBN-13 : 3322901572
Rating : 4/5 (76 Downloads)

Synopsis Introduction to Markov Chains by : Ehrhard Behrends

Besides the investigation of general chains the book contains chapters which are concerned with eigenvalue techniques, conductance, stopping times, the strong Markov property, couplings, strong uniform times, Markov chains on arbitrary finite groups (including a crash-course in harmonic analysis), random generation and counting, Markov random fields, Gibbs fields, the Metropolis sampler, and simulated annealing. With 170 exercises.

Essentials of Stochastic Processes

Essentials of Stochastic Processes
Author :
Publisher : Springer
Total Pages : 282
Release :
ISBN-10 : 9783319456140
ISBN-13 : 3319456148
Rating : 4/5 (40 Downloads)

Synopsis Essentials of Stochastic Processes by : Richard Durrett

Building upon the previous editions, this textbook is a first course in stochastic processes taken by undergraduate and graduate students (MS and PhD students from math, statistics, economics, computer science, engineering, and finance departments) who have had a course in probability theory. It covers Markov chains in discrete and continuous time, Poisson processes, renewal processes, martingales, and option pricing. One can only learn a subject by seeing it in action, so there are a large number of examples and more than 300 carefully chosen exercises to deepen the reader’s understanding. Drawing from teaching experience and student feedback, there are many new examples and problems with solutions that use TI-83 to eliminate the tedious details of solving linear equations by hand, and the collection of exercises is much improved, with many more biological examples. Originally included in previous editions, material too advanced for this first course in stochastic processes has been eliminated while treatment of other topics useful for applications has been expanded. In addition, the ordering of topics has been improved; for example, the difficult subject of martingales is delayed until its usefulness can be applied in the treatment of mathematical finance.

Non-negative Matrices and Markov Chains

Non-negative Matrices and Markov Chains
Author :
Publisher : Springer Science & Business Media
Total Pages : 295
Release :
ISBN-10 : 9780387327921
ISBN-13 : 0387327924
Rating : 4/5 (21 Downloads)

Synopsis Non-negative Matrices and Markov Chains by : E. Seneta

Since its inception by Perron and Frobenius, the theory of non-negative matrices has developed enormously and is now being used and extended in applied fields of study as diverse as probability theory, numerical analysis, demography, mathematical economics, and dynamic programming, while its development is still proceeding rapidly as a branch of pure mathematics in its own right. While there are books which cover this or that aspect of the theory, it is nevertheless not uncommon for workers in one or another branch of its development to be unaware of what is known in other branches, even though there is often formal overlap. One of the purposes of this book is to relate several aspects of the theory, insofar as this is possible. The author hopes that the book will be useful to mathematicians; but in particular to the workers in applied fields, so the mathematics has been kept as simple as could be managed. The mathematical requisites for reading it are: some knowledge of real-variable theory, and matrix theory; and a little knowledge of complex-variable; the emphasis is on real-variable methods. (There is only one part of the book, the second part of 55.5, which is of rather specialist interest, and requires deeper knowledge.) Appendices provide brief expositions of those areas of mathematics needed which may be less g- erally known to the average reader.

Markov Chains

Markov Chains
Author :
Publisher : Springer Science & Business Media
Total Pages : 456
Release :
ISBN-10 : 9781475731248
ISBN-13 : 1475731248
Rating : 4/5 (48 Downloads)

Synopsis Markov Chains by : Pierre Bremaud

Primarily an introduction to the theory of stochastic processes at the undergraduate or beginning graduate level, the primary objective of this book is to initiate students in the art of stochastic modelling. However it is motivated by significant applications and progressively brings the student to the borders of contemporary research. Examples are from a wide range of domains, including operations research and electrical engineering. Researchers and students in these areas as well as in physics, biology and the social sciences will find this book of interest.

Sensitivity Analysis: Matrix Methods in Demography and Ecology

Sensitivity Analysis: Matrix Methods in Demography and Ecology
Author :
Publisher : Springer
Total Pages : 308
Release :
ISBN-10 : 9783030105341
ISBN-13 : 3030105342
Rating : 4/5 (41 Downloads)

Synopsis Sensitivity Analysis: Matrix Methods in Demography and Ecology by : Hal Caswell

This open access book shows how to use sensitivity analysis in demography. It presents new methods for individuals, cohorts, and populations, with applications to humans, other animals, and plants. The analyses are based on matrix formulations of age-classified, stage-classified, and multistate population models. Methods are presented for linear and nonlinear, deterministic and stochastic, and time-invariant and time-varying cases. Readers will discover results on the sensitivity of statistics of longevity, life disparity, occupancy times, the net reproductive rate, and statistics of Markov chain models in demography. They will also see applications of sensitivity analysis to population growth rates, stable population structures, reproductive value, equilibria under immigration and nonlinearity, and population cycles. Individual stochasticity is a theme throughout, with a focus that goes beyond expected values to include variances in demographic outcomes. The calculations are easily and accurately implemented in matrix-oriented programming languages such as Matlab or R. Sensitivity analysis will help readers create models to predict the effect of future changes, to evaluate policy effects, and to identify possible evolutionary responses to the environment. Complete with many examples of the application, the book will be of interest to researchers and graduate students in human demography and population biology. The material will also appeal to those in mathematical biology and applied mathematics.

Probability on Trees and Networks

Probability on Trees and Networks
Author :
Publisher : Cambridge University Press
Total Pages : 1023
Release :
ISBN-10 : 9781316785331
ISBN-13 : 1316785335
Rating : 4/5 (31 Downloads)

Synopsis Probability on Trees and Networks by : Russell Lyons

Starting around the late 1950s, several research communities began relating the geometry of graphs to stochastic processes on these graphs. This book, twenty years in the making, ties together research in the field, encompassing work on percolation, isoperimetric inequalities, eigenvalues, transition probabilities, and random walks. Written by two leading researchers, the text emphasizes intuition, while giving complete proofs and more than 850 exercises. Many recent developments, in which the authors have played a leading role, are discussed, including percolation on trees and Cayley graphs, uniform spanning forests, the mass-transport technique, and connections on random walks on graphs to embedding in Hilbert space. This state-of-the-art account of probability on networks will be indispensable for graduate students and researchers alike.

Probabilistic Methods for Algorithmic Discrete Mathematics

Probabilistic Methods for Algorithmic Discrete Mathematics
Author :
Publisher : Springer Science & Business Media
Total Pages : 342
Release :
ISBN-10 : 9783662127889
ISBN-13 : 3662127881
Rating : 4/5 (89 Downloads)

Synopsis Probabilistic Methods for Algorithmic Discrete Mathematics by : Michel Habib

Leave nothing to chance. This cliche embodies the common belief that ran domness has no place in carefully planned methodologies, every step should be spelled out, each i dotted and each t crossed. In discrete mathematics at least, nothing could be further from the truth. Introducing random choices into algorithms can improve their performance. The application of proba bilistic tools has led to the resolution of combinatorial problems which had resisted attack for decades. The chapters in this volume explore and celebrate this fact. Our intention was to bring together, for the first time, accessible discus sions of the disparate ways in which probabilistic ideas are enriching discrete mathematics. These discussions are aimed at mathematicians with a good combinatorial background but require only a passing acquaintance with the basic definitions in probability (e.g. expected value, conditional probability). A reader who already has a firm grasp on the area will be interested in the original research, novel syntheses, and discussions of ongoing developments scattered throughout the book. Some of the most convincing demonstrations of the power of these tech niques are randomized algorithms for estimating quantities which are hard to compute exactly. One example is the randomized algorithm of Dyer, Frieze and Kannan for estimating the volume of a polyhedron. To illustrate these techniques, we consider a simple related problem. Suppose S is some region of the unit square defined by a system of polynomial inequalities: Pi (x. y) ~ o.

An Introduction to Stochastic Modeling

An Introduction to Stochastic Modeling
Author :
Publisher : Academic Press
Total Pages : 410
Release :
ISBN-10 : 9781483269276
ISBN-13 : 1483269272
Rating : 4/5 (76 Downloads)

Synopsis An Introduction to Stochastic Modeling by : Howard M. Taylor

An Introduction to Stochastic Modeling provides information pertinent to the standard concepts and methods of stochastic modeling. This book presents the rich diversity of applications of stochastic processes in the sciences. Organized into nine chapters, this book begins with an overview of diverse types of stochastic models, which predicts a set of possible outcomes weighed by their likelihoods or probabilities. This text then provides exercises in the applications of simple stochastic analysis to appropriate problems. Other chapters consider the study of general functions of independent, identically distributed, nonnegative random variables representing the successive intervals between renewals. This book discusses as well the numerous examples of Markov branching processes that arise naturally in various scientific disciplines. The final chapter deals with queueing models, which aid the design process by predicting system performance. This book is a valuable resource for students of engineering and management science. Engineers will also find this book useful.