Mathematical Aspects of Artificial Intelligence

Mathematical Aspects of Artificial Intelligence
Author :
Publisher : American Mathematical Soc.
Total Pages : 290
Release :
ISBN-10 : 9780821806111
ISBN-13 : 0821806114
Rating : 4/5 (11 Downloads)

Synopsis Mathematical Aspects of Artificial Intelligence by : Frederick Hoffman

There exists a history of great expectations and large investments involving artificial intelligence (AI). There are also notable shortfalls and memorable disappointments. One major controversy regarding AI is just how mathematical a field it is or should be. This text includes contributions that examine the connections between AI and mathematics, demonstrating the potential for mathematical applications and exposing some of the more mathematical areas within AI. The goal is to stimulate interest in people who can contribute to the field or use its results. Included in the work by M. Newborn on the famous Deep BLue chess match. He discusses highly mathematical techniques involving graph theory, combinatorics and probability and statistics. G. Shafer offers his development of probability through probability trees with some of the results appearing here for the first time. M. Golumbic treats temporal reasoning with ties to the famous Frame Problem. His contribution involves logic, combinatorics and graph theory and leads to two chapters with logical themes. H. Kirchner explains how ordering techniques in automated reasoning systems make deduction more efficient. Constraint logic programming is discussed by C. Lassez, who shows its intimate ties to linear programming with crucial theorems going back to Fourier. V. Nalwa's work provides a brief tour of computer vision, tying it to mathematics - from combinatorics, probability and geometry to partial differential equations. All authors are gifted expositors and are current contributors to the field. The wide scope of the volume includes research problems, research tools and good motivational material for teaching.

Mathematics for Machine Learning

Mathematics for Machine Learning
Author :
Publisher : Cambridge University Press
Total Pages : 392
Release :
ISBN-10 : 9781108569323
ISBN-13 : 1108569323
Rating : 4/5 (23 Downloads)

Synopsis Mathematics for Machine Learning by : Marc Peter Deisenroth

The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.

Research Directions in Computational Mechanics

Research Directions in Computational Mechanics
Author :
Publisher : National Academies Press
Total Pages : 145
Release :
ISBN-10 : 9780309046480
ISBN-13 : 0309046483
Rating : 4/5 (80 Downloads)

Synopsis Research Directions in Computational Mechanics by : National Research Council

Computational mechanics is a scientific discipline that marries physics, computers, and mathematics to emulate natural physical phenomena. It is a technology that allows scientists to study and predict the performance of various productsâ€"important for research and development in the industrialized world. This book describes current trends and future research directions in computational mechanics in areas where gaps exist in current knowledge and where major advances are crucial to continued technological developments in the United States.

Artificial Mathematical Intelligence

Artificial Mathematical Intelligence
Author :
Publisher : Springer Nature
Total Pages : 268
Release :
ISBN-10 : 9783030502737
ISBN-13 : 3030502732
Rating : 4/5 (37 Downloads)

Synopsis Artificial Mathematical Intelligence by : Danny A. J. Gómez Ramírez

This volume discusses the theoretical foundations of a new inter- and intra-disciplinary meta-research discipline, which can be succinctly called cognitive metamathematics, with the ultimate goal of achieving a global instance of concrete Artificial Mathematical Intelligence (AMI). In other words, AMI looks for the construction of an (ideal) global artificial agent being able to (co-)solve interactively formal problems with a conceptual mathematical description in a human-style way. It first gives formal guidelines from the philosophical, logical, meta-mathematical, cognitive, and computational points of view supporting the formal existence of such a global AMI framework, examining how much of current mathematics can be completely generated by an interactive computer program and how close we are to constructing a machine that would be able to simulate the way a modern working mathematician handles solvable mathematical conjectures from a conceptual point of view. The thesis that it is possible to meta-model the intellectual job of a working mathematician is heuristically supported by the computational theory of mind, which posits that the mind is in fact a computational system, and by the meta-fact that genuine mathematical proofs are, in principle, algorithmically verifiable, at least theoretically. The introduction to this volume provides then the grounding multifaceted principles of cognitive metamathematics, and, at the same time gives an overview of some of the most outstanding results in this direction, keeping in mind that the main focus is human-style proofs, and not simply formal verification. The first part of the book presents the new cognitive foundations of mathematics’ program dealing with the construction of formal refinements of seminal (meta-)mathematical notions and facts. The second develops positions and formalizations of a global taxonomy of classic and new cognitive abilities, and computational tools allowing for calculation of formal conceptual blends are described. In particular, a new cognitive characterization of the Church-Turing Thesis is presented. In the last part, classic and new results concerning the co-generation of a vast amount of old and new mathematical concepts and the key parts of several standard proofs in Hilbert-style deductive systems are shown as well, filling explicitly a well-known gap in the mechanization of mathematics concerning artificial conceptual generation.

Mathematical Methods in Artificial Intelligence

Mathematical Methods in Artificial Intelligence
Author :
Publisher : Wiley-IEEE Computer Society Press
Total Pages : 0
Release :
ISBN-10 : 0818672005
ISBN-13 : 9780818672002
Rating : 4/5 (05 Downloads)

Synopsis Mathematical Methods in Artificial Intelligence by : Edward A. Bender

Mathematical Methods in Artificial Intelligence introduces the student to the important mathematical foundations and tools in AI and describes their applications to the design of AI algorithms. This useful text presents an introductory AI course based on the most important mathematics and its applications. It focuses on important topics that are proven useful in AI and involve the most broadly applicable mathematics. The book explores AI from three different viewpoints: goals, methods or tools, and achievements and failures. Its goals of reasoning, planning, learning, or language understanding and use are centered around the expert system idea. The tools of AI are presented in terms of what can be incorporated in the data structures. The book looks into the concepts and tools of limited structure, mathematical logic, logic-like representation, numerical information, and nonsymbolic structures. The text emphasizes the main mathematical tools for representing and manipulating knowledge symbolically. These are various forms of logic for qualitative knowledge, and probability and related concepts for quantitative knowledge. The main tools for manipulating knowledge nonsymbolically, as neural nets, are optimization methods and statistics. This material is covered in the text by topics such as trees and search, classical mathematical logic, and uncertainty and reasoning. A solutions diskette is available, please call for more information.

Artificial and Mathematical Theory of Computation

Artificial and Mathematical Theory of Computation
Author :
Publisher : Academic Press
Total Pages : 488
Release :
ISBN-10 : 9780323148313
ISBN-13 : 032314831X
Rating : 4/5 (13 Downloads)

Synopsis Artificial and Mathematical Theory of Computation by : Vladimir Lifschitz

Artificial and Mathematical Theory of Computation is a collection of papers that discusses the technical, historical, and philosophical problems related to artificial intelligence and the mathematical theory of computation. Papers cover the logical approach to artificial intelligence; knowledge representation and common sense reasoning; automated deduction; logic programming; nonmonotonic reasoning and circumscription. One paper suggests that the design of parallel programming languages will invariably become more sophisticated as human skill in programming and software developments improves to attain faster running programs. An example of metaprogramming to systems concerns the design and control of operations of factory devices, such as robots and numerically controlled machine tools. Metaprogramming involves two design aspects: that of the activity of a single device and that of the interaction with other devices. One paper cites the application of artificial intelligence pertaining to the project "proof checker for first-order logic" at the Stanford Artificial Intelligence Laboratory. Another paper explains why the bisection algorithm widely used in computer science does not work. This book can prove valuable to engineers and researchers of electrical, computer, and mechanical engineering, as well as, for computer programmers and designers of industrial processes.

A Thousand Brains

A Thousand Brains
Author :
Publisher : Basic Books
Total Pages : 251
Release :
ISBN-10 : 9781541675803
ISBN-13 : 1541675800
Rating : 4/5 (03 Downloads)

Synopsis A Thousand Brains by : Jeff Hawkins

A bestselling author, neuroscientist, and computer engineer unveils a theory of intelligence that will revolutionize our understanding of the brain and the future of AI. For all of neuroscience's advances, we've made little progress on its biggest question: How do simple cells in the brain create intelligence? Jeff Hawkins and his team discovered that the brain uses maplike structures to build a model of the world—not just one model, but hundreds of thousands of models of everything we know. This discovery allows Hawkins to answer important questions about how we perceive the world, why we have a sense of self, and the origin of high-level thought. A Thousand Brains heralds a revolution in the understanding of intelligence. It is a big-think book, in every sense of the word. One of the Financial Times' Best Books of 2021 One of Bill Gates' Five Favorite Books of 2021

Revolutionary Mathematics

Revolutionary Mathematics
Author :
Publisher : Verso Books
Total Pages : 241
Release :
ISBN-10 : 9781788734004
ISBN-13 : 1788734009
Rating : 4/5 (04 Downloads)

Synopsis Revolutionary Mathematics by : Justin Joque

Traces the revolution in statistics that gave rise to artificial intelligence and predictive algorithms refiguring contemporary capitalism. Our finances, politics, media, opportunities, information, shopping and knowledge production are mediated through algorithms and their statistical approaches to knowledge; increasingly, these methods form the organizational backbone of contemporary capitalism. Revolutionary Mathematics traces the revolution in statistics and probability that has quietly underwritten the explosion of machine learning, big data and predictive algorithms that now decide many aspects of our lives. Exploring shifts in the philosophical understanding of probability in the late twentieth century, Joque shows how this was not merely a technical change but a wholesale philosophical transformation in the production of knowledge and the extraction of value. This book provides a new and unique perspective on the dangers of allowing artificial intelligence and big data to manage society. It is essential reading for those who want to understand the underlying ideological and philosophical changes that have fueled the rise of algorithms and convinced so many to blindly trust their outputs, reshaping our current political and economic situation.

Artificial Intelligence and Applied Mathematics in Engineering Problems

Artificial Intelligence and Applied Mathematics in Engineering Problems
Author :
Publisher : Springer Nature
Total Pages : 1105
Release :
ISBN-10 : 9783030361785
ISBN-13 : 3030361780
Rating : 4/5 (85 Downloads)

Synopsis Artificial Intelligence and Applied Mathematics in Engineering Problems by : D. Jude Hemanth

This book features research presented at the 1st International Conference on Artificial Intelligence and Applied Mathematics in Engineering, held on 20–22 April 2019 at Antalya, Manavgat (Turkey). In today’s world, various engineering areas are essential components of technological innovations and effective real-world solutions for a better future. In this context, the book focuses on problems in engineering and discusses research using artificial intelligence and applied mathematics. Intended for scientists, experts, M.Sc. and Ph.D. students, postdocs and anyone interested in the subjects covered, the book can also be used as a reference resource for courses related to artificial intelligence and applied mathematics.

Mathematics and Computation

Mathematics and Computation
Author :
Publisher : Princeton University Press
Total Pages : 434
Release :
ISBN-10 : 9780691189130
ISBN-13 : 0691189137
Rating : 4/5 (30 Downloads)

Synopsis Mathematics and Computation by : Avi Wigderson

From the winner of the Turing Award and the Abel Prize, an introduction to computational complexity theory, its connections and interactions with mathematics, and its central role in the natural and social sciences, technology, and philosophy Mathematics and Computation provides a broad, conceptual overview of computational complexity theory—the mathematical study of efficient computation. With important practical applications to computer science and industry, computational complexity theory has evolved into a highly interdisciplinary field, with strong links to most mathematical areas and to a growing number of scientific endeavors. Avi Wigderson takes a sweeping survey of complexity theory, emphasizing the field’s insights and challenges. He explains the ideas and motivations leading to key models, notions, and results. In particular, he looks at algorithms and complexity, computations and proofs, randomness and interaction, quantum and arithmetic computation, and cryptography and learning, all as parts of a cohesive whole with numerous cross-influences. Wigderson illustrates the immense breadth of the field, its beauty and richness, and its diverse and growing interactions with other areas of mathematics. He ends with a comprehensive look at the theory of computation, its methodology and aspirations, and the unique and fundamental ways in which it has shaped and will further shape science, technology, and society. For further reading, an extensive bibliography is provided for all topics covered. Mathematics and Computation is useful for undergraduate and graduate students in mathematics, computer science, and related fields, as well as researchers and teachers in these fields. Many parts require little background, and serve as an invitation to newcomers seeking an introduction to the theory of computation. Comprehensive coverage of computational complexity theory, and beyond High-level, intuitive exposition, which brings conceptual clarity to this central and dynamic scientific discipline Historical accounts of the evolution and motivations of central concepts and models A broad view of the theory of computation's influence on science, technology, and society Extensive bibliography