Accelerated Materials Discovery

Accelerated Materials Discovery
Author :
Publisher : Walter de Gruyter GmbH & Co KG
Total Pages : 215
Release :
ISBN-10 : 9783110738087
ISBN-13 : 3110738082
Rating : 4/5 (87 Downloads)

Synopsis Accelerated Materials Discovery by : Phil De Luna

Typical timelines to go from discovery to impact in the advanced materials sector are between 10 to 30 years. Advances in robotics and artificial intelligence are poised to accelerate the discovery and development of new materials dramatically. This book is a primer for any materials scientist looking to future-proof their careers and get ahead of the disruption that artificial intelligence and robotic automation is just starting to unleash. It is meant to be an overview of how we can use these disruptive technologies to augment and supercharge our abilities to discover new materials that will solve world’s biggest challenges. Written by world leading experts on accelerated materials discovery from academia (UC Berkeley, Caltech, UBC, Cornell, etc.), industry (Toyota Research Institute, Citrine Informatics) and national labs (National Research Council of Canada, Lawrence Berkeley National Labs).

Information Science for Materials Discovery and Design

Information Science for Materials Discovery and Design
Author :
Publisher : Springer
Total Pages : 316
Release :
ISBN-10 : 9783319238715
ISBN-13 : 331923871X
Rating : 4/5 (15 Downloads)

Synopsis Information Science for Materials Discovery and Design by : Turab Lookman

This book deals with an information-driven approach to plan materials discovery and design, iterative learning. The authors present contrasting but complementary approaches, such as those based on high throughput calculations, combinatorial experiments or data driven discovery, together with machine-learning methods. Similarly, statistical methods successfully applied in other fields, such as biosciences, are presented. The content spans from materials science to information science to reflect the cross-disciplinary nature of the field. A perspective is presented that offers a paradigm (codesign loop for materials design) to involve iteratively learning from experiments and calculations to develop materials with optimum properties. Such a loop requires the elements of incorporating domain materials knowledge, a database of descriptors (the genes), a surrogate or statistical model developed to predict a given property with uncertainties, performing adaptive experimental design to guide the next experiment or calculation and aspects of high throughput calculations as well as experiments. The book is about manufacturing with the aim to halving the time to discover and design new materials. Accelerating discovery relies on using large databases, computation, and mathematics in the material sciences in a manner similar to the way used to in the Human Genome Initiative. Novel approaches are therefore called to explore the enormous phase space presented by complex materials and processes. To achieve the desired performance gains, a predictive capability is needed to guide experiments and computations in the most fruitful directions by reducing not successful trials. Despite advances in computation and experimental techniques, generating vast arrays of data; without a clear way of linkage to models, the full value of data driven discovery cannot be realized. Hence, along with experimental, theoretical and computational materials science, we need to add a “fourth leg’’ to our toolkit to make the “Materials Genome'' a reality, the science of Materials Informatics.

Computational Materials Discovery

Computational Materials Discovery
Author :
Publisher : Royal Society of Chemistry
Total Pages : 470
Release :
ISBN-10 : 9781782629610
ISBN-13 : 1782629610
Rating : 4/5 (10 Downloads)

Synopsis Computational Materials Discovery by : Artem Oganov

A unique and timely book providing an overview of both the methodologies and applications of computational materials design.

Materials Discovery and Design

Materials Discovery and Design
Author :
Publisher : Springer
Total Pages : 266
Release :
ISBN-10 : 9783319994659
ISBN-13 : 3319994654
Rating : 4/5 (59 Downloads)

Synopsis Materials Discovery and Design by : Turab Lookman

This book addresses the current status, challenges and future directions of data-driven materials discovery and design. It presents the analysis and learning from data as a key theme in many science and cyber related applications. The challenging open questions as well as future directions in the application of data science to materials problems are sketched. Computational and experimental facilities today generate vast amounts of data at an unprecedented rate. The book gives guidance to discover new knowledge that enables materials innovation to address grand challenges in energy, environment and security, the clearer link needed between the data from these facilities and the theory and underlying science. The role of inference and optimization methods in distilling the data and constraining predictions using insights and results from theory is key to achieving the desired goals of real time analysis and feedback. Thus, the importance of this book lies in emphasizing that the full value of knowledge driven discovery using data can only be realized by integrating statistical and information sciences with materials science, which is increasingly dependent on high throughput and large scale computational and experimental data gathering efforts. This is especially the case as we enter a new era of big data in materials science with the planning of future experimental facilities such as the Linac Coherent Light Source at Stanford (LCLS-II), the European X-ray Free Electron Laser (EXFEL) and MaRIE (Matter Radiation in Extremes), the signature concept facility from Los Alamos National Laboratory. These facilities are expected to generate hundreds of terabytes to several petabytes of in situ spatially and temporally resolved data per sample. The questions that then arise include how we can learn from the data to accelerate the processing and analysis of reconstructed microstructure, rapidly map spatially resolved properties from high throughput data, devise diagnostics for pattern detection, and guide experiments towards desired targeted properties. The authors are an interdisciplinary group of leading experts who bring the excitement of the nascent and rapidly emerging field of materials informatics to the reader.

Discovery of Design

Discovery of Design
Author :
Publisher : New Leaf Publishing Group
Total Pages : 244
Release :
ISBN-10 : 9781614582236
ISBN-13 : 1614582238
Rating : 4/5 (36 Downloads)

Synopsis Discovery of Design by : Dr. Donald DeYoung

A world created in perfection, now unveiled... From the frontiers of scientific discovery, researchers are now taking design elements from the natural world and creating extraordinary breakthroughs that benefit our health, our quality of life, our ability to communicate, and even help us work more efficiently. An exciting look at cutting-edge scientific advances, Discover of Design highlights incredible examples that include: How things like batteries, human organ repair, microlenses, automotive engineering, paint, and even credit card security all have links to natural designs Innovations like solar panels in space unfurled using technology gleaned from beech tree leaves, and optic research rooted in the photonic properties of opal gemstones Current and future research from the fields of stealth technology, communications, cosmetics, nanotechnology, surveillance, and more! Take a fantastic journey into the intersection of science and God's blueprints for life - discovering answers to some of the most intricate challenges we face. Experience this powerful apologetics message in a multi-purpose resource as a personal enrichment tool or as an educational supplement.

Handbook of Materials Modeling

Handbook of Materials Modeling
Author :
Publisher : Springer Science & Business Media
Total Pages : 2903
Release :
ISBN-10 : 9781402032868
ISBN-13 : 1402032862
Rating : 4/5 (68 Downloads)

Synopsis Handbook of Materials Modeling by : Sidney Yip

The first reference of its kind in the rapidly emerging field of computational approachs to materials research, this is a compendium of perspective-providing and topical articles written to inform students and non-specialists of the current status and capabilities of modelling and simulation. From the standpoint of methodology, the development follows a multiscale approach with emphasis on electronic-structure, atomistic, and mesoscale methods, as well as mathematical analysis and rate processes. Basic models are treated across traditional disciplines, not only in the discussion of methods but also in chapters on crystal defects, microstructure, fluids, polymers and soft matter. Written by authors who are actively participating in the current development, this collection of 150 articles has the breadth and depth to be a major contributor toward defining the field of computational materials. In addition, there are 40 commentaries by highly respected researchers, presenting various views that should interest the future generations of the community. Subject Editors: Martin Bazant, MIT; Bruce Boghosian, Tufts University; Richard Catlow, Royal Institution; Long-Qing Chen, Pennsylvania State University; William Curtin, Brown University; Tomas Diaz de la Rubia, Lawrence Livermore National Laboratory; Nicolas Hadjiconstantinou, MIT; Mark F. Horstemeyer, Mississippi State University; Efthimios Kaxiras, Harvard University; L. Mahadevan, Harvard University; Dimitrios Maroudas, University of Massachusetts; Nicola Marzari, MIT; Horia Metiu, University of California Santa Barbara; Gregory C. Rutledge, MIT; David J. Srolovitz, Princeton University; Bernhardt L. Trout, MIT; Dieter Wolf, Argonne National Laboratory.

Computational Approaches to Materials Design

Computational Approaches to Materials Design
Author :
Publisher : Engineering Science Reference
Total Pages : 0
Release :
ISBN-10 : 1522502904
ISBN-13 : 9781522502906
Rating : 4/5 (04 Downloads)

Synopsis Computational Approaches to Materials Design by : Shubhabrata Datta

Brings together empirical research, theoretical concepts, and the various approaches in the design and discovery of new materials. Thois volume highlights optimization tools and soft computing methods, and is ideal for researchers, both in academia and in industrial settings, and practitioners who are interested in the application of computational techniques in materials engineering.

Artificial Intelligence for Materials Science

Artificial Intelligence for Materials Science
Author :
Publisher : Springer Nature
Total Pages : 231
Release :
ISBN-10 : 9783030683108
ISBN-13 : 3030683109
Rating : 4/5 (08 Downloads)

Synopsis Artificial Intelligence for Materials Science by : Yuan Cheng

Machine learning methods have lowered the cost of exploring new structures of unknown compounds, and can be used to predict reasonable expectations and subsequently validated by experimental results. As new insights and several elaborative tools have been developed for materials science and engineering in recent years, it is an appropriate time to present a book covering recent progress in this field. Searchable and interactive databases can promote research on emerging materials. Recently, databases containing a large number of high-quality materials properties for new advanced materials discovery have been developed. These approaches are set to make a significant impact on human life and, with numerous commercial developments emerging, will become a major academic topic in the coming years. This authoritative and comprehensive book will be of interest to both existing researchers in this field as well as others in the materials science community who wish to take advantage of these powerful techniques. The book offers a global spread of authors, from USA, Canada, UK, Japan, France, Russia, China and Singapore, who are all world recognized experts in their separate areas. With content relevant to both academic and commercial points of view, and offering an accessible overview of recent progress and potential future directions, the book will interest graduate students, postgraduate researchers, and consultants and industrial engineers.

Materials Science and Engineering: Concepts, Methodologies, Tools, and Applications

Materials Science and Engineering: Concepts, Methodologies, Tools, and Applications
Author :
Publisher : IGI Global
Total Pages : 1837
Release :
ISBN-10 : 9781522517993
ISBN-13 : 1522517995
Rating : 4/5 (93 Downloads)

Synopsis Materials Science and Engineering: Concepts, Methodologies, Tools, and Applications by : Management Association, Information Resources

The design and study of materials is a pivotal component to new discoveries in the various fields of science and technology. By better understanding the components and structures of materials, researchers can increase its applications across different industries. Materials Science and Engineering: Concepts, Methodologies, Tools, and Applications is a compendium of the latest academic material on investigations, technologies, and techniques pertaining to analyzing the synthesis and design of new materials. Through its broad and extensive coverage on a variety of crucial topics, such as nanomaterials, biomaterials, and relevant computational methods, this multi-volume work is an essential reference source for engineers, academics, researchers, students, professionals, and practitioners seeking innovative perspectives in the field of materials science and engineering.

Machine Learning

Machine Learning
Author :
Publisher : MIT Press
Total Pages : 1102
Release :
ISBN-10 : 9780262018029
ISBN-13 : 0262018020
Rating : 4/5 (29 Downloads)

Synopsis Machine Learning by : Kevin P. Murphy

A comprehensive introduction to machine learning that uses probabilistic models and inference as a unifying approach. Today's Web-enabled deluge of electronic data calls for automated methods of data analysis. Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach. The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package—PMTK (probabilistic modeling toolkit)—that is freely available online. The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.