Mastering Data Engineering And Analytics With Databricks
Download Mastering Data Engineering And Analytics With Databricks full books in PDF, epub, and Kindle. Read online free Mastering Data Engineering And Analytics With Databricks ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Manoj Kumar |
Publisher |
: Orange Education Pvt Ltd |
Total Pages |
: 567 |
Release |
: 2024-09-30 |
ISBN-10 |
: 9788196862046 |
ISBN-13 |
: 8196862040 |
Rating |
: 4/5 (46 Downloads) |
Synopsis Mastering Data Engineering and Analytics with Databricks by : Manoj Kumar
TAGLINE Master Databricks to Transform Data into Strategic Insights for Tomorrow’s Business Challenges KEY FEATURES ● Combines theory with practical steps to master Databricks, Delta Lake, and MLflow. ● Real-world examples from FMCG and CPG sectors demonstrate Databricks in action. ● Covers real-time data processing, ML integration, and CI/CD for scalable pipelines. ● Offers proven strategies to optimize workflows and avoid common pitfalls. DESCRIPTION In today’s data-driven world, mastering data engineering is crucial for driving innovation and delivering real business impact. Databricks is one of the most powerful platforms which unifies data, analytics and AI requirements of numerous organizations worldwide. Mastering Data Engineering and Analytics with Databricks goes beyond the basics, offering a hands-on, practical approach tailored for professionals eager to excel in the evolving landscape of data engineering and analytics. This book uniquely blends foundational knowledge with advanced applications, equipping readers with the expertise to build, optimize, and scale data pipelines that meet real-world business needs. With a focus on actionable learning, it delves into complex workflows, including real-time data processing, advanced optimization with Delta Lake, and seamless ML integration with MLflow—skills critical for today’s data professionals. Drawing from real-world case studies in FMCG and CPG industries, this book not only teaches you how to implement Databricks solutions but also provides strategic insights into tackling industry-specific challenges. From setting up your environment to deploying CI/CD pipelines, you'll gain a competitive edge by mastering techniques that are directly applicable to your organization’s data strategy. By the end, you’ll not just understand Databricks—you’ll command it, positioning yourself as a leader in the data engineering space. WHAT WILL YOU LEARN ● Design and implement scalable, high-performance data pipelines using Databricks for various business use cases. ● Optimize query performance and efficiently manage cloud resources for cost-effective data processing. ● Seamlessly integrate machine learning models into your data engineering workflows for smarter automation. ● Build and deploy real-time data processing solutions for timely and actionable insights. ● Develop reliable and fault-tolerant Delta Lake architectures to support efficient data lakes at scale. WHO IS THIS BOOK FOR? This book is designed for data engineering students, aspiring data engineers, experienced data professionals, cloud data architects, data scientists and analysts looking to expand their skill sets, as well as IT managers seeking to master data engineering and analytics with Databricks. A basic understanding of data engineering concepts, familiarity with data analytics, and some experience with cloud computing or programming languages such as Python or SQL will help readers fully benefit from the book’s content. TABLE OF CONTENTS SECTION 1 1. Introducing Data Engineering with Databricks 2. Setting Up a Databricks Environment for Data Engineering 3. Working with Databricks Utilities and Clusters SECTION 2 4. Extracting and Loading Data Using Databricks 5. Transforming Data with Databricks 6. Handling Streaming Data with Databricks 7. Creating Delta Live Tables 8. Data Partitioning and Shuffling 9. Performance Tuning and Best Practices 10. Workflow Management 11. Databricks SQL Warehouse 12. Data Storage and Unity Catalog 13. Monitoring Databricks Clusters and Jobs 14. Production Deployment Strategies 15. Maintaining Data Pipelines in Production 16. Managing Data Security and Governance 17. Real-World Data Engineering Use Cases with Databricks 18. AI and ML Essentials 19. Integrating Databricks with External Tools Index
Author |
: Jules S. Damji |
Publisher |
: O'Reilly Media |
Total Pages |
: 400 |
Release |
: 2020-07-16 |
ISBN-10 |
: 9781492050018 |
ISBN-13 |
: 1492050016 |
Rating |
: 4/5 (18 Downloads) |
Synopsis Learning Spark by : Jules S. Damji
Data is bigger, arrives faster, and comes in a variety of formats—and it all needs to be processed at scale for analytics or machine learning. But how can you process such varied workloads efficiently? Enter Apache Spark. Updated to include Spark 3.0, this second edition shows data engineers and data scientists why structure and unification in Spark matters. Specifically, this book explains how to perform simple and complex data analytics and employ machine learning algorithms. Through step-by-step walk-throughs, code snippets, and notebooks, you’ll be able to: Learn Python, SQL, Scala, or Java high-level Structured APIs Understand Spark operations and SQL Engine Inspect, tune, and debug Spark operations with Spark configurations and Spark UI Connect to data sources: JSON, Parquet, CSV, Avro, ORC, Hive, S3, or Kafka Perform analytics on batch and streaming data using Structured Streaming Build reliable data pipelines with open source Delta Lake and Spark Develop machine learning pipelines with MLlib and productionize models using MLflow
Author |
: Javier Luraschi |
Publisher |
: "O'Reilly Media, Inc." |
Total Pages |
: 296 |
Release |
: 2019-10-07 |
ISBN-10 |
: 9781492046325 |
ISBN-13 |
: 1492046329 |
Rating |
: 4/5 (25 Downloads) |
Synopsis Mastering Spark with R by : Javier Luraschi
If you’re like most R users, you have deep knowledge and love for statistics. But as your organization continues to collect huge amounts of data, adding tools such as Apache Spark makes a lot of sense. With this practical book, data scientists and professionals working with large-scale data applications will learn how to use Spark from R to tackle big data and big compute problems. Authors Javier Luraschi, Kevin Kuo, and Edgar Ruiz show you how to use R with Spark to solve different data analysis problems. This book covers relevant data science topics, cluster computing, and issues that should interest even the most advanced users. Analyze, explore, transform, and visualize data in Apache Spark with R Create statistical models to extract information and predict outcomes; automate the process in production-ready workflows Perform analysis and modeling across many machines using distributed computing techniques Use large-scale data from multiple sources and different formats with ease from within Spark Learn about alternative modeling frameworks for graph processing, geospatial analysis, and genomics at scale Dive into advanced topics including custom transformations, real-time data processing, and creating custom Spark extensions
Author |
: Bill Inmon |
Publisher |
: Technics Publications |
Total Pages |
: 256 |
Release |
: 2021-10 |
ISBN-10 |
: 1634629663 |
ISBN-13 |
: 9781634629669 |
Rating |
: 4/5 (63 Downloads) |
Synopsis Building the Data Lakehouse by : Bill Inmon
The data lakehouse is the next generation of the data warehouse and data lake, designed to meet today's complex and ever-changing analytics, machine learning, and data science requirements. Learn about the features and architecture of the data lakehouse, along with its powerful analytical infrastructure. Appreciate how the universal common connector blends structured, textual, analog, and IoT data. Maintain the lakehouse for future generations through Data Lakehouse Housekeeping and Data Future-proofing. Know how to incorporate the lakehouse into an existing data governance strategy. Incorporate data catalogs, data lineage tools, and open source software into your architecture to ensure your data scientists, analysts, and end users live happily ever after.
Author |
: Jesse Anderson |
Publisher |
: |
Total Pages |
: |
Release |
: 2020 |
ISBN-10 |
: 1484262298 |
ISBN-13 |
: 9781484262290 |
Rating |
: 4/5 (98 Downloads) |
Synopsis Data Teams by : Jesse Anderson
Author |
: Manoj Kukreja |
Publisher |
: Packt Publishing Ltd |
Total Pages |
: 480 |
Release |
: 2021-10-22 |
ISBN-10 |
: 9781801074322 |
ISBN-13 |
: 1801074321 |
Rating |
: 4/5 (22 Downloads) |
Synopsis Data Engineering with Apache Spark, Delta Lake, and Lakehouse by : Manoj Kukreja
Understand the complexities of modern-day data engineering platforms and explore strategies to deal with them with the help of use case scenarios led by an industry expert in big data Key FeaturesBecome well-versed with the core concepts of Apache Spark and Delta Lake for building data platformsLearn how to ingest, process, and analyze data that can be later used for training machine learning modelsUnderstand how to operationalize data models in production using curated dataBook Description In the world of ever-changing data and schemas, it is important to build data pipelines that can auto-adjust to changes. This book will help you build scalable data platforms that managers, data scientists, and data analysts can rely on. Starting with an introduction to data engineering, along with its key concepts and architectures, this book will show you how to use Microsoft Azure Cloud services effectively for data engineering. You'll cover data lake design patterns and the different stages through which the data needs to flow in a typical data lake. Once you've explored the main features of Delta Lake to build data lakes with fast performance and governance in mind, you'll advance to implementing the lambda architecture using Delta Lake. Packed with practical examples and code snippets, this book takes you through real-world examples based on production scenarios faced by the author in his 10 years of experience working with big data. Finally, you'll cover data lake deployment strategies that play an important role in provisioning the cloud resources and deploying the data pipelines in a repeatable and continuous way. By the end of this data engineering book, you'll know how to effectively deal with ever-changing data and create scalable data pipelines to streamline data science, ML, and artificial intelligence (AI) tasks. What you will learnDiscover the challenges you may face in the data engineering worldAdd ACID transactions to Apache Spark using Delta LakeUnderstand effective design strategies to build enterprise-grade data lakesExplore architectural and design patterns for building efficient data ingestion pipelinesOrchestrate a data pipeline for preprocessing data using Apache Spark and Delta Lake APIsAutomate deployment and monitoring of data pipelines in productionGet to grips with securing, monitoring, and managing data pipelines models efficientlyWho this book is for This book is for aspiring data engineers and data analysts who are new to the world of data engineering and are looking for a practical guide to building scalable data platforms. If you already work with PySpark and want to use Delta Lake for data engineering, you'll find this book useful. Basic knowledge of Python, Spark, and SQL is expected.
Author |
: Sagar Lad |
Publisher |
: BPB Publications |
Total Pages |
: 359 |
Release |
: 2022-07-11 |
ISBN-10 |
: 9789355511393 |
ISBN-13 |
: 9355511396 |
Rating |
: 4/5 (93 Downloads) |
Synopsis Mastering Databricks Lakehouse Platform by : Sagar Lad
Enable data and AI workloads with absolute security and scalability KEY FEATURES ● Detailed, step-by-step instructions for every data professional starting a career with data engineering. ● Access to DevOps, Machine Learning, and Analytics wirthin a single unified platform. ● Includes design considerations and security best practices for efficient utilization of Databricks platform. DESCRIPTION Starting with the fundamentals of the databricks lakehouse platform, the book teaches readers on administering various data operations, including Machine Learning, DevOps, Data Warehousing, and BI on the single platform. The subsequent chapters discuss working around data pipelines utilizing the databricks lakehouse platform with data processing and audit quality framework. The book teaches to leverage the Databricks Lakehouse platform to develop delta live tables, streamline ETL/ELT operations, and administer data sharing and orchestration. The book explores how to schedule and manage jobs through the Databricks notebook UI and the Jobs API. The book discusses how to implement DevOps methods on the Databricks Lakehouse platform for data and AI workloads. The book helps readers prepare and process data and standardizes the entire ML lifecycle, right from experimentation to production. The book doesn't just stop here; instead, it teaches how to directly query data lake with your favourite BI tools like Power BI, Tableau, or Qlik. Some of the best industry practices on building data engineering solutions are also demonstrated towards the end of the book. WHAT YOU WILL LEARN ● Acquire capabilities to administer end-to-end Databricks Lakehouse Platform. ● Utilize Flow to deploy and monitor machine learning solutions. ● Gain practical experience with SQL Analytics and connect Tableau, Power BI, and Qlik. ● Configure clusters and automate CI/CD deployment. ● Learn how to use Airflow, Data Factory, Delta Live Tables, Databricks notebook UI, and the Jobs API. WHO THIS BOOK IS FOR This book is for every data professional, including data engineers, ETL developers, DB administrators, Data Scientists, SQL Developers, and BI specialists. You don't need any prior expertise with this platform because the book covers all the basics. TABLE OF CONTENTS 1. Getting started with Databricks Platform 2. Management of Databricks Platform 3. Spark, Databricks, and Building a Data Quality Framework 4. Data Sharing and Orchestration with Databricks 5. Simplified ETL with Delta Live Tables 6. SCD Type 2 Implementation with Delta Lake 7. Machine Learning Model Management with Databricks 8. Continuous Integration and Delivery with Databricks 9. Visualization with Databricks 10. Best Security and Compliance Practices of Databricks
Author |
: Phani Raj |
Publisher |
: Packt Publishing Ltd |
Total Pages |
: 452 |
Release |
: 2021-09-17 |
ISBN-10 |
: 9781789618556 |
ISBN-13 |
: 178961855X |
Rating |
: 4/5 (56 Downloads) |
Synopsis Azure Databricks Cookbook by : Phani Raj
Get to grips with building and productionizing end-to-end big data solutions in Azure and learn best practices for working with large datasets Key FeaturesIntegrate with Azure Synapse Analytics, Cosmos DB, and Azure HDInsight Kafka Cluster to scale and analyze your projects and build pipelinesUse Databricks SQL to run ad hoc queries on your data lake and create dashboardsProductionize a solution using CI/CD for deploying notebooks and Azure Databricks Service to various environmentsBook Description Azure Databricks is a unified collaborative platform for performing scalable analytics in an interactive environment. The Azure Databricks Cookbook provides recipes to get hands-on with the analytics process, including ingesting data from various batch and streaming sources and building a modern data warehouse. The book starts by teaching you how to create an Azure Databricks instance within the Azure portal, Azure CLI, and ARM templates. You'll work through clusters in Databricks and explore recipes for ingesting data from sources, including files, databases, and streaming sources such as Apache Kafka and EventHub. The book will help you explore all the features supported by Azure Databricks for building powerful end-to-end data pipelines. You'll also find out how to build a modern data warehouse by using Delta tables and Azure Synapse Analytics. Later, you'll learn how to write ad hoc queries and extract meaningful insights from the data lake by creating visualizations and dashboards with Databricks SQL. Finally, you'll deploy and productionize a data pipeline as well as deploy notebooks and Azure Databricks service using continuous integration and continuous delivery (CI/CD). By the end of this Azure book, you'll be able to use Azure Databricks to streamline different processes involved in building data-driven apps. What you will learnRead and write data from and to various Azure resources and file formatsBuild a modern data warehouse with Delta Tables and Azure Synapse AnalyticsExplore jobs, stages, and tasks and see how Spark lazy evaluation worksHandle concurrent transactions and learn performance optimization in Delta tablesLearn Databricks SQL and create real-time dashboards in Databricks SQLIntegrate Azure DevOps for version control, deploying, and productionizing solutions with CI/CD pipelinesDiscover how to use RBAC and ACLs to restrict data accessBuild end-to-end data processing pipeline for near real-time data analyticsWho this book is for This recipe-based book is for data scientists, data engineers, big data professionals, and machine learning engineers who want to perform data analytics on their applications. Prior experience of working with Apache Spark and Azure is necessary to get the most out of this book.
Author |
: Diego Rodrigues |
Publisher |
: Diego Rodrigues |
Total Pages |
: 122 |
Release |
: 2024-10-16 |
ISBN-10 |
: |
ISBN-13 |
: |
Rating |
: 4/5 ( Downloads) |
Synopsis DATABRICKS SERVICE GUIDE by : Diego Rodrigues
Discover the power of data analysis and machine learning with the "DATABRICKS SERVICES GUIDE: From Fundamentals to Practical Applications." This book is an essential reference for data engineers, data scientists, and developers seeking to master the Databricks platform, one of the most advanced solutions for big data and artificial intelligence. Written by Diego Rodrigues, an internationally recognized author with vast experience in technology, this guide offers a comprehensive view of the main services of Databricks. From initial setup to advanced solutions implementation, each chapter is designed to provide clear and detailed instructions, enabling you to immediately apply the knowledge acquired in your projects. The "DATABRICKS SERVICES GUIDE" covers fundamental topics such as Databricks Workspace, Delta Lake, Data Engineering, Machine Learning, and much more. This book is ideal for both beginners who seek a solid foundation and experienced professionals who want to deepen their skills and explore the advanced capabilities of Databricks. This guide has been designed to be a practical and accessible tool, facilitating the understanding of concepts and the application of best practices in production environments. With practical examples and a structured approach, you will be ready to face technological challenges and implement scalable and secure solutions with Databricks. Tags: Databricks big data machine learning engineering Delta Lake processing analysis Apache Spark notebooks clusters integration pipelines automation cloud storage security data compliance GDPR lgpd engineering transformation SQL real-time API data governance data orchestration data integration Power BI Tableau CI/CD cluster management performance monitoring logs data optimization WAF Databricks File System DBFS cloud computing data science Python Scala R artificial intelligence machine learning workflow scalability efficiency encryption automation DevOps S3 Lambda Glue Kafka Kubernetes Hadoop continuous integration continuous delivery security compliance AWS Microsoft Azure Google IBM Alibaba Diego Rodrigues
Author |
: Javier Luraschi |
Publisher |
: O'Reilly Media |
Total Pages |
: 296 |
Release |
: 2019-10-07 |
ISBN-10 |
: 9781492046349 |
ISBN-13 |
: 1492046345 |
Rating |
: 4/5 (49 Downloads) |
Synopsis Mastering Spark with R by : Javier Luraschi
If you’re like most R users, you have deep knowledge and love for statistics. But as your organization continues to collect huge amounts of data, adding tools such as Apache Spark makes a lot of sense. With this practical book, data scientists and professionals working with large-scale data applications will learn how to use Spark from R to tackle big data and big compute problems. Authors Javier Luraschi, Kevin Kuo, and Edgar Ruiz show you how to use R with Spark to solve different data analysis problems. This book covers relevant data science topics, cluster computing, and issues that should interest even the most advanced users. Analyze, explore, transform, and visualize data in Apache Spark with R Create statistical models to extract information and predict outcomes; automate the process in production-ready workflows Perform analysis and modeling across many machines using distributed computing techniques Use large-scale data from multiple sources and different formats with ease from within Spark Learn about alternative modeling frameworks for graph processing, geospatial analysis, and genomics at scale Dive into advanced topics including custom transformations, real-time data processing, and creating custom Spark extensions