Markov Processes and Applications

Markov Processes and Applications
Author :
Publisher : John Wiley & Sons
Total Pages : 322
Release :
ISBN-10 : 9780470721865
ISBN-13 : 0470721863
Rating : 4/5 (65 Downloads)

Synopsis Markov Processes and Applications by : Etienne Pardoux

"This well-written book provides a clear and accessible treatment of the theory of discrete and continuous-time Markov chains, with an emphasis towards applications. The mathematical treatment is precise and rigorous without superfluous details, and the results are immediately illustrated in illuminating examples. This book will be extremely useful to anybody teaching a course on Markov processes." Jean-François Le Gall, Professor at Université de Paris-Orsay, France. Markov processes is the class of stochastic processes whose past and future are conditionally independent, given their present state. They constitute important models in many applied fields. After an introduction to the Monte Carlo method, this book describes discrete time Markov chains, the Poisson process and continuous time Markov chains. It also presents numerous applications including Markov Chain Monte Carlo, Simulated Annealing, Hidden Markov Models, Annotation and Alignment of Genomic sequences, Control and Filtering, Phylogenetic tree reconstruction and Queuing networks. The last chapter is an introduction to stochastic calculus and mathematical finance. Features include: The Monte Carlo method, discrete time Markov chains, the Poisson process and continuous time jump Markov processes. An introduction to diffusion processes, mathematical finance and stochastic calculus. Applications of Markov processes to various fields, ranging from mathematical biology, to financial engineering and computer science. Numerous exercises and problems with solutions to most of them

Markov Decision Processes with Applications to Finance

Markov Decision Processes with Applications to Finance
Author :
Publisher : Springer Science & Business Media
Total Pages : 393
Release :
ISBN-10 : 9783642183249
ISBN-13 : 3642183247
Rating : 4/5 (49 Downloads)

Synopsis Markov Decision Processes with Applications to Finance by : Nicole Bäuerle

The theory of Markov decision processes focuses on controlled Markov chains in discrete time. The authors establish the theory for general state and action spaces and at the same time show its application by means of numerous examples, mostly taken from the fields of finance and operations research. By using a structural approach many technicalities (concerning measure theory) are avoided. They cover problems with finite and infinite horizons, as well as partially observable Markov decision processes, piecewise deterministic Markov decision processes and stopping problems. The book presents Markov decision processes in action and includes various state-of-the-art applications with a particular view towards finance. It is useful for upper-level undergraduates, Master's students and researchers in both applied probability and finance, and provides exercises (without solutions).

Finite Markov Processes and Their Applications

Finite Markov Processes and Their Applications
Author :
Publisher : Courier Corporation
Total Pages : 305
Release :
ISBN-10 : 9780486150581
ISBN-13 : 0486150585
Rating : 4/5 (81 Downloads)

Synopsis Finite Markov Processes and Their Applications by : Marius Iosifescu

A self-contained treatment of finite Markov chains and processes, this text covers both theory and applications. Author Marius Iosifescu, vice president of the Romanian Academy and director of its Center for Mathematical Statistics, begins with a review of relevant aspects of probability theory and linear algebra. Experienced readers may start with the second chapter, a treatment of fundamental concepts of homogeneous finite Markov chain theory that offers examples of applicable models. The text advances to studies of two basic types of homogeneous finite Markov chains: absorbing and ergodic chains. A complete study of the general properties of homogeneous chains follows. Succeeding chapters examine the fundamental role of homogeneous infinite Markov chains in mathematical modeling employed in the fields of psychology and genetics; the basics of nonhomogeneous finite Markov chain theory; and a study of Markovian dependence in continuous time, which constitutes an elementary introduction to the study of continuous parameter stochastic processes.

Applied Semi-Markov Processes

Applied Semi-Markov Processes
Author :
Publisher : Springer Science & Business Media
Total Pages : 315
Release :
ISBN-10 : 9780387295480
ISBN-13 : 0387295488
Rating : 4/5 (80 Downloads)

Synopsis Applied Semi-Markov Processes by : Jacques Janssen

Aims to give to the reader the tools necessary to apply semi-Markov processes in real-life problems. The book is self-contained and, starting from a low level of probability concepts, gradually brings the reader to a deep knowledge of semi-Markov processes. Presents homogeneous and non-homogeneous semi-Markov processes, as well as Markov and semi-Markov rewards processes. The concepts are fundamental for many applications, but they are not as thoroughly presented in other books on the subject as they are here.

Poisson Point Processes and Their Application to Markov Processes

Poisson Point Processes and Their Application to Markov Processes
Author :
Publisher : Springer
Total Pages : 54
Release :
ISBN-10 : 9789811002724
ISBN-13 : 981100272X
Rating : 4/5 (24 Downloads)

Synopsis Poisson Point Processes and Their Application to Markov Processes by : Kiyosi Itô

An extension problem (often called a boundary problem) of Markov processes has been studied, particularly in the case of one-dimensional diffusion processes, by W. Feller, K. Itô, and H. P. McKean, among others. In this book, Itô discussed a case of a general Markov process with state space S and a specified point a ∈ S called a boundary. The problem is to obtain all possible recurrent extensions of a given minimal process (i.e., the process on S \ {a} which is absorbed on reaching the boundary a). The study in this lecture is restricted to a simpler case of the boundary a being a discontinuous entrance point, leaving a more general case of a continuous entrance point to future works. He established a one-to-one correspondence between a recurrent extension and a pair of a positive measure k(db) on S \ {a} (called the jumping-in measure and a non-negative number m

Continuous-Time Markov Chains and Applications

Continuous-Time Markov Chains and Applications
Author :
Publisher : Springer Science & Business Media
Total Pages : 442
Release :
ISBN-10 : 9781461443469
ISBN-13 : 1461443466
Rating : 4/5 (69 Downloads)

Synopsis Continuous-Time Markov Chains and Applications by : G. George Yin

This book gives a systematic treatment of singularly perturbed systems that naturally arise in control and optimization, queueing networks, manufacturing systems, and financial engineering. It presents results on asymptotic expansions of solutions of Komogorov forward and backward equations, properties of functional occupation measures, exponential upper bounds, and functional limit results for Markov chains with weak and strong interactions. To bridge the gap between theory and applications, a large portion of the book is devoted to applications in controlled dynamic systems, production planning, and numerical methods for controlled Markovian systems with large-scale and complex structures in the real-world problems. This second edition has been updated throughout and includes two new chapters on asymptotic expansions of solutions for backward equations and hybrid LQG problems. The chapters on analytic and probabilistic properties of two-time-scale Markov chains have been almost completely rewritten and the notation has been streamlined and simplified. This book is written for applied mathematicians, engineers, operations researchers, and applied scientists. Selected material from the book can also be used for a one semester advanced graduate-level course in applied probability and stochastic processes.

Understanding Markov Chains

Understanding Markov Chains
Author :
Publisher : Springer
Total Pages : 379
Release :
ISBN-10 : 9789811306594
ISBN-13 : 9811306591
Rating : 4/5 (94 Downloads)

Synopsis Understanding Markov Chains by : Nicolas Privault

This book provides an undergraduate-level introduction to discrete and continuous-time Markov chains and their applications, with a particular focus on the first step analysis technique and its applications to average hitting times and ruin probabilities. It also discusses classical topics such as recurrence and transience, stationary and limiting distributions, as well as branching processes. It first examines in detail two important examples (gambling processes and random walks) before presenting the general theory itself in the subsequent chapters. It also provides an introduction to discrete-time martingales and their relation to ruin probabilities and mean exit times, together with a chapter on spatial Poisson processes. The concepts presented are illustrated by examples, 138 exercises and 9 problems with their solutions.

Markov Chains: Models, Algorithms and Applications

Markov Chains: Models, Algorithms and Applications
Author :
Publisher : Springer Science & Business Media
Total Pages : 212
Release :
ISBN-10 : 9780387293370
ISBN-13 : 038729337X
Rating : 4/5 (70 Downloads)

Synopsis Markov Chains: Models, Algorithms and Applications by : Wai-Ki Ching

Markov chains are a particularly powerful and widely used tool for analyzing a variety of stochastic (probabilistic) systems over time. This monograph will present a series of Markov models, starting from the basic models and then building up to higher-order models. Included in the higher-order discussions are multivariate models, higher-order multivariate models, and higher-order hidden models. In each case, the focus is on the important kinds of applications that can be made with the class of models being considered in the current chapter. Special attention is given to numerical algorithms that can efficiently solve the models. Therefore, Markov Chains: Models, Algorithms and Applications outlines recent developments of Markov chain models for modeling queueing sequences, Internet, re-manufacturing systems, reverse logistics, inventory systems, bio-informatics, DNA sequences, genetic networks, data mining, and many other practical systems.

Markov Processes for Stochastic Modeling

Markov Processes for Stochastic Modeling
Author :
Publisher : Newnes
Total Pages : 515
Release :
ISBN-10 : 9780124078390
ISBN-13 : 0124078397
Rating : 4/5 (90 Downloads)

Synopsis Markov Processes for Stochastic Modeling by : Oliver Ibe

Markov processes are processes that have limited memory. In particular, their dependence on the past is only through the previous state. They are used to model the behavior of many systems including communications systems, transportation networks, image segmentation and analysis, biological systems and DNA sequence analysis, random atomic motion and diffusion in physics, social mobility, population studies, epidemiology, animal and insect migration, queueing systems, resource management, dams, financial engineering, actuarial science, and decision systems. Covering a wide range of areas of application of Markov processes, this second edition is revised to highlight the most important aspects as well as the most recent trends and applications of Markov processes. The author spent over 16 years in the industry before returning to academia, and he has applied many of the principles covered in this book in multiple research projects. Therefore, this is an applications-oriented book that also includes enough theory to provide a solid ground in the subject for the reader. - Presents both the theory and applications of the different aspects of Markov processes - Includes numerous solved examples as well as detailed diagrams that make it easier to understand the principle being presented - Discusses different applications of hidden Markov models, such as DNA sequence analysis and speech analysis.

Stochastic Processes with Applications

Stochastic Processes with Applications
Author :
Publisher : SIAM
Total Pages : 726
Release :
ISBN-10 : 9780898716894
ISBN-13 : 0898716896
Rating : 4/5 (94 Downloads)

Synopsis Stochastic Processes with Applications by : Rabi N. Bhattacharya

This book develops systematically and rigorously, yet in an expository and lively manner, the evolution of general random processes and their large time properties such as transience, recurrence, and convergence to steady states. The emphasis is on the most important classes of these processes from the viewpoint of theory as well as applications, namely, Markov processes. The book features very broad coverage of the most applicable aspects of stochastic processes, including sufficient material for self-contained courses on random walks in one and multiple dimensions; Markov chains in discrete and continuous times, including birth-death processes; Brownian motion and diffusions; stochastic optimization; and stochastic differential equations. This book is for graduate students in mathematics, statistics, science and engineering, and it may also be used as a reference by professionals in diverse fields whose work involves the application of probability.