Markov Models For Pattern Recognition
Download Markov Models For Pattern Recognition full books in PDF, epub, and Kindle. Read online free Markov Models For Pattern Recognition ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Gernot A. Fink |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 275 |
Release |
: 2014-01-14 |
ISBN-10 |
: 9781447163084 |
ISBN-13 |
: 1447163087 |
Rating |
: 4/5 (84 Downloads) |
Synopsis Markov Models for Pattern Recognition by : Gernot A. Fink
This thoroughly revised and expanded new edition now includes a more detailed treatment of the EM algorithm, a description of an efficient approximate Viterbi-training procedure, a theoretical derivation of the perplexity measure and coverage of multi-pass decoding based on n-best search. Supporting the discussion of the theoretical foundations of Markov modeling, special emphasis is also placed on practical algorithmic solutions. Features: introduces the formal framework for Markov models; covers the robust handling of probability quantities; presents methods for the configuration of hidden Markov models for specific application areas; describes important methods for efficient processing of Markov models, and the adaptation of the models to different tasks; examines algorithms for searching within the complex solution spaces that result from the joint application of Markov chain and hidden Markov models; reviews key applications of Markov models.
Author |
: Stan Z. Li |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 372 |
Release |
: 2009-04-03 |
ISBN-10 |
: 9781848002791 |
ISBN-13 |
: 1848002793 |
Rating |
: 4/5 (91 Downloads) |
Synopsis Markov Random Field Modeling in Image Analysis by : Stan Z. Li
Markov random field (MRF) theory provides a basis for modeling contextual constraints in visual processing and interpretation. It enables us to develop optimal vision algorithms systematically when used with optimization principles. This book presents a comprehensive study on the use of MRFs for solving computer vision problems. Various vision models are presented in a unified framework, including image restoration and reconstruction, edge and region segmentation, texture, stereo and motion, object matching and recognition, and pose estimation. This third edition includes the most recent advances and has new and expanded sections on topics such as: Bayesian Network; Discriminative Random Fields; Strong Random Fields; Spatial-Temporal Models; Learning MRF for Classification. This book is an excellent reference for researchers working in computer vision, image processing, statistical pattern recognition and applications of MRFs. It is also suitable as a text for advanced courses in these areas.
Author |
: Horst Bunke |
Publisher |
: World Scientific |
Total Pages |
: 246 |
Release |
: 2001-06-04 |
ISBN-10 |
: 9789814491471 |
ISBN-13 |
: 9814491470 |
Rating |
: 4/5 (71 Downloads) |
Synopsis Hidden Markov Models: Applications In Computer Vision by : Horst Bunke
Hidden Markov models (HMMs) originally emerged in the domain of speech recognition. In recent years, they have attracted growing interest in the area of computer vision as well. This book is a collection of articles on new developments in the theory of HMMs and their application in computer vision. It addresses topics such as handwriting recognition, shape recognition, face and gesture recognition, tracking, and image database retrieval.This book is also published as a special issue of the International Journal of Pattern Recognition and Artificial Intelligence (February 2001).
Author |
: Rutkowski Leszek |
Publisher |
: Springer |
Total Pages |
: 637 |
Release |
: 2013-05-16 |
ISBN-10 |
: 3642386571 |
ISBN-13 |
: 9783642386572 |
Rating |
: 4/5 (71 Downloads) |
Synopsis Artificial Intelligence and Soft Computing by : Rutkowski Leszek
The two-volume set LNAI 7894 and LNCS 7895 constitutes the refereed proceedings of the 12th International Conference on Artificial Intelligence and Soft Computing, ICAISC 2013, held in Zakopane, Poland in June 2013. The 112 revised full papers presented together with one invited paper were carefully reviewed and selected from 274 submissions. The 57 papers included in the first volume are organized in the following topical sections: neural networks and their applications; fuzzy systems and their applications; pattern classification; and computer vision, image and speech analysis.
Author |
: Mark Gales |
Publisher |
: Now Publishers Inc |
Total Pages |
: 125 |
Release |
: 2008 |
ISBN-10 |
: 9781601981202 |
ISBN-13 |
: 1601981201 |
Rating |
: 4/5 (02 Downloads) |
Synopsis The Application of Hidden Markov Models in Speech Recognition by : Mark Gales
The Application of Hidden Markov Models in Speech Recognition presents the core architecture of a HMM-based LVCSR system and proceeds to describe the various refinements which are needed to achieve state-of-the-art performance.
Author |
: S.Z. Li |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 274 |
Release |
: 2012-12-06 |
ISBN-10 |
: 9784431669333 |
ISBN-13 |
: 4431669337 |
Rating |
: 4/5 (33 Downloads) |
Synopsis Markov Random Field Modeling in Computer Vision by : S.Z. Li
Markov random field (MRF) modeling provides a basis for the characterization of contextual constraints on visual interpretation and enables us to develop optimal vision algorithms systematically based on sound principles. This book presents a comprehensive study on using MRFs to solve computer vision problems, covering the following parts essential to the subject: introduction to fundamental theories, formulations of various vision models in the MRF framework, MRF parameter estimation, and optimization algorithms. Various MRF vision models are presented in a unified form, including image restoration and reconstruction, edge and region segmentation, texture, stereo and motion, object matching and recognition, and pose estimation. This book is an excellent reference for researchers working in computer vision, image processing, pattern recognition and applications of MRFs. It is also suitable as a text for advanced courses in the subject.
Author |
: Petra Perner |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 452 |
Release |
: 2003-06-25 |
ISBN-10 |
: 9783540405047 |
ISBN-13 |
: 3540405046 |
Rating |
: 4/5 (47 Downloads) |
Synopsis Machine Learning and Data Mining in Pattern Recognition by : Petra Perner
TheInternationalConferenceonMachineLearningandDataMining(MLDM)is the third meeting in a series of biennial events, which started in 1999, organized by the Institute of Computer Vision and Applied Computer Sciences (IBaI) in Leipzig. MLDM began as a workshop and is now a conference, and has brought the topic of machine learning and data mining to the attention of the research community. Seventy-?ve papers were submitted to the conference this year. The program committeeworkedhardtoselectthemostprogressiveresearchinafairandc- petent review process which led to the acceptance of 33 papers for presentation at the conference. The 33 papers in these proceedings cover a wide variety of topics related to machine learning and data mining. The two invited talks deal with learning in case-based reasoning and with mining for structural data. The contributed papers can be grouped into nine areas: support vector machines; pattern dis- very; decision trees; clustering; classi?cation and retrieval; case-based reasoning; Bayesian models and methods; association rules; and applications. We would like to express our appreciation to the reviewers for their precise andhighlyprofessionalwork.WearegratefultotheGermanScienceFoundation for its support of the Eastern European researchers. We appreciate the help and understanding of the editorial sta? at Springer Verlag, and in particular Alfred Hofmann,whosupportedthepublicationoftheseproceedingsintheLNAIseries. Last, but not least, we wish to thank all the speakers and participants who contributed to the success of the conference.
Author |
: E.S. Gelsema |
Publisher |
: North Holland |
Total Pages |
: 600 |
Release |
: 1994-09-30 |
ISBN-10 |
: STANFORD:36105010477490 |
ISBN-13 |
: |
Rating |
: 4/5 (90 Downloads) |
Synopsis Pattern Recognition in Practice IV: Multiple Paradigms, Comparative Studies and Hybrid Systems by : E.S. Gelsema
These proceedings are divided into six sections: pattern recognition; signal and image processing; probabilistic reasoning; neural networks; comparative studies; and hybrid systems. They offer prospective users examples of a range of applications of the methods described.
Author |
: Luis Enrique Sucar |
Publisher |
: Springer Nature |
Total Pages |
: 370 |
Release |
: 2020-12-23 |
ISBN-10 |
: 9783030619435 |
ISBN-13 |
: 3030619435 |
Rating |
: 4/5 (35 Downloads) |
Synopsis Probabilistic Graphical Models by : Luis Enrique Sucar
This fully updated new edition of a uniquely accessible textbook/reference provides a general introduction to probabilistic graphical models (PGMs) from an engineering perspective. It features new material on partially observable Markov decision processes, causal graphical models, causal discovery and deep learning, as well as an even greater number of exercises; it also incorporates a software library for several graphical models in Python. The book covers the fundamentals for each of the main classes of PGMs, including representation, inference and learning principles, and reviews real-world applications for each type of model. These applications are drawn from a broad range of disciplines, highlighting the many uses of Bayesian classifiers, hidden Markov models, Bayesian networks, dynamic and temporal Bayesian networks, Markov random fields, influence diagrams, and Markov decision processes. Topics and features: Presents a unified framework encompassing all of the main classes of PGMs Explores the fundamental aspects of representation, inference and learning for each technique Examines new material on partially observable Markov decision processes, and graphical models Includes a new chapter introducing deep neural networks and their relation with probabilistic graphical models Covers multidimensional Bayesian classifiers, relational graphical models, and causal models Provides substantial chapter-ending exercises, suggestions for further reading, and ideas for research or programming projects Describes classifiers such as Gaussian Naive Bayes, Circular Chain Classifiers, and Hierarchical Classifiers with Bayesian Networks Outlines the practical application of the different techniques Suggests possible course outlines for instructors This classroom-tested work is suitable as a textbook for an advanced undergraduate or a graduate course in probabilistic graphical models for students of computer science, engineering, and physics. Professionals wishing to apply probabilistic graphical models in their own field, or interested in the basis of these techniques, will also find the book to be an invaluable reference. Dr. Luis Enrique Sucar is a Senior Research Scientist at the National Institute for Astrophysics, Optics and Electronics (INAOE), Puebla, Mexico. He received the National Science Prize en 2016.
Author |
: Gernot A. Fink |
Publisher |
: |
Total Pages |
: 0 |
Release |
: 2023 |
ISBN-10 |
: 7519296946 |
ISBN-13 |
: 9787519296940 |
Rating |
: 4/5 (46 Downloads) |
Synopsis Markov Models for Pattern Recognition by : Gernot A. Fink