Machine Learning Techniques For Improved Business Analytics
Download Machine Learning Techniques For Improved Business Analytics full books in PDF, epub, and Kindle. Read online free Machine Learning Techniques For Improved Business Analytics ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: G., Dileep Kumar |
Publisher |
: IGI Global |
Total Pages |
: 300 |
Release |
: 2018-07-06 |
ISBN-10 |
: 9781522535355 |
ISBN-13 |
: 1522535357 |
Rating |
: 4/5 (55 Downloads) |
Synopsis Machine Learning Techniques for Improved Business Analytics by : G., Dileep Kumar
Analytical tools and algorithms are essential in business data and information systems. Efficient economic and financial forecasting in machine learning techniques increases gains while reducing risks. Providing research on predictive models with high accuracy, stability, and ease of interpretation is important in improving data preparation, analysis, and implementation processes in business organizations. Machine Learning Techniques for Improved Business Analytics is a collection of innovative research on the methods and applications of artificial intelligence in strategic business decisions and management. Featuring coverage on a broad range of topics such as data mining, portfolio optimization, and social network analysis, this book is ideally designed for business managers and practitioners, upper-level business students, and researchers seeking current research on large-scale information control and evaluation technologies that exceed the functionality of conventional data processing techniques.
Author |
: John D. Kelleher |
Publisher |
: MIT Press |
Total Pages |
: 853 |
Release |
: 2020-10-20 |
ISBN-10 |
: 9780262361101 |
ISBN-13 |
: 0262361108 |
Rating |
: 4/5 (01 Downloads) |
Synopsis Fundamentals of Machine Learning for Predictive Data Analytics, second edition by : John D. Kelleher
The second edition of a comprehensive introduction to machine learning approaches used in predictive data analytics, covering both theory and practice. Machine learning is often used to build predictive models by extracting patterns from large datasets. These models are used in predictive data analytics applications including price prediction, risk assessment, predicting customer behavior, and document classification. This introductory textbook offers a detailed and focused treatment of the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications. Technical and mathematical material is augmented with explanatory worked examples, and case studies illustrate the application of these models in the broader business context. This second edition covers recent developments in machine learning, especially in a new chapter on deep learning, and two new chapters that go beyond predictive analytics to cover unsupervised learning and reinforcement learning.
Author |
: Harvard Business Review |
Publisher |
: HBR Insights |
Total Pages |
: 160 |
Release |
: 2019 |
ISBN-10 |
: 1633697894 |
ISBN-13 |
: 9781633697898 |
Rating |
: 4/5 (94 Downloads) |
Synopsis Artificial Intelligence by : Harvard Business Review
Companies that don't use AI to their advantage will soon be left behind. Artificial intelligence and machine learning will drive a massive reshaping of the economy and society. What should you and your company be doing right now to ensure that your business is poised for success? These articles by AI experts and consultants will help you understand today's essential thinking on what AI is capable of now, how to adopt it in your organization, and how the technology is likely to evolve in the near future. Artificial Intelligence: The Insights You Need from Harvard Business Review will help you spearhead important conversations, get going on the right AI initiatives for your company, and capitalize on the opportunity of the machine intelligence revolution. Catch up on current topics and deepen your understanding of them with the Insights You Need series from Harvard Business Review. Featuring some of HBR's best and most recent thinking, Insights You Need titles are both a primer on today's most pressing issues and an extension of the conversation, with interesting research, interviews, case studies, and practical ideas to help you explore how a particular issue will impact your company and what it will mean for you and your business.
Author |
: Parul Gandhi |
Publisher |
: John Wiley & Sons |
Total Pages |
: 320 |
Release |
: 2021-02-03 |
ISBN-10 |
: 9781119711124 |
ISBN-13 |
: 1119711126 |
Rating |
: 4/5 (24 Downloads) |
Synopsis Internet of Things in Business Transformation by : Parul Gandhi
The objective of this book is to teach what IoT is, how it works, and how it can be successfully utilized in business. This book helps to develop and implement a powerful IoT strategy for business transformation as well as project execution. Digital change, business creation/change and upgrades in the ways and manners in which we work, live, and engage with our clients and customers, are all enveloped by the Internet of Things which is now named "Industry 5.0" or "Industrial Internet of Things." The sheer number of IoT(a billion+), demonstrates the advent of an advanced business society led by sustainable robotics and business intelligence. This book will be an indispensable asset in helping businesses to understand the new technology and thrive.
Author |
: Galit Shmueli |
Publisher |
: John Wiley & Sons |
Total Pages |
: 628 |
Release |
: 2023-03-28 |
ISBN-10 |
: 9781119829836 |
ISBN-13 |
: 1119829836 |
Rating |
: 4/5 (36 Downloads) |
Synopsis Machine Learning for Business Analytics by : Galit Shmueli
MACHINE LEARNING FOR BUSINESS ANALYTICS Machine learning—also known as data mining or predictive analytics—is a fundamental part of data science. It is used by organizations in a wide variety of arenas to turn raw data into actionable information. Machine Learning for Business Analytics: Concepts, Techniques, and Applications with Analytic Solver® Data Mining provides a comprehensive introduction and an overview of this methodology. The fourth edition of this best-selling textbook covers both statistical and machine learning algorithms for prediction, classification, visualization, dimension reduction, rule mining, recommendations, clustering, text mining, experimentation, time series forecasting and network analytics. Along with hands-on exercises and real-life case studies, it also discusses managerial and ethical issues for responsible use of machine learning techniques. This fourth edition of Machine Learning for Business Analytics also includes: An expanded chapter on deep learning A new chapter on experimental feedback techniques, including A/B testing, uplift modeling, and reinforcement learning A new chapter on responsible data science Updates and new material based on feedback from instructors teaching MBA, Masters in Business Analytics and related programs, undergraduate, diploma and executive courses, and from their students A full chapter devoted to relevant case studies with more than a dozen cases demonstrating applications for the machine learning techniques End-of-chapter exercises that help readers gauge and expand their comprehension and competency of the material presented A companion website with more than two dozen data sets, and instructor materials including exercise solutions, slides, and case solutions This textbook is an ideal resource for upper-level undergraduate and graduate level courses in data science, predictive analytics, and business analytics. It is also an excellent reference for analysts, researchers, and data science practitioners working with quantitative data in management, finance, marketing, operations management, information systems, computer science, and information technology.
Author |
: Grégoire Montavon |
Publisher |
: Springer |
Total Pages |
: 753 |
Release |
: 2012-11-14 |
ISBN-10 |
: 9783642352898 |
ISBN-13 |
: 3642352898 |
Rating |
: 4/5 (98 Downloads) |
Synopsis Neural Networks: Tricks of the Trade by : Grégoire Montavon
The twenty last years have been marked by an increase in available data and computing power. In parallel to this trend, the focus of neural network research and the practice of training neural networks has undergone a number of important changes, for example, use of deep learning machines. The second edition of the book augments the first edition with more tricks, which have resulted from 14 years of theory and experimentation by some of the world's most prominent neural network researchers. These tricks can make a substantial difference (in terms of speed, ease of implementation, and accuracy) when it comes to putting algorithms to work on real problems.
Author |
: Galit Shmueli |
Publisher |
: John Wiley & Sons |
Total Pages |
: 608 |
Release |
: 2019-10-14 |
ISBN-10 |
: 9781119549857 |
ISBN-13 |
: 111954985X |
Rating |
: 4/5 (57 Downloads) |
Synopsis Data Mining for Business Analytics by : Galit Shmueli
Data Mining for Business Analytics: Concepts, Techniques, and Applications in Python presents an applied approach to data mining concepts and methods, using Python software for illustration Readers will learn how to implement a variety of popular data mining algorithms in Python (a free and open-source software) to tackle business problems and opportunities. This is the sixth version of this successful text, and the first using Python. It covers both statistical and machine learning algorithms for prediction, classification, visualization, dimension reduction, recommender systems, clustering, text mining and network analysis. It also includes: A new co-author, Peter Gedeck, who brings both experience teaching business analytics courses using Python, and expertise in the application of machine learning methods to the drug-discovery process A new section on ethical issues in data mining Updates and new material based on feedback from instructors teaching MBA, undergraduate, diploma and executive courses, and from their students More than a dozen case studies demonstrating applications for the data mining techniques described End-of-chapter exercises that help readers gauge and expand their comprehension and competency of the material presented A companion website with more than two dozen data sets, and instructor materials including exercise solutions, PowerPoint slides, and case solutions Data Mining for Business Analytics: Concepts, Techniques, and Applications in Python is an ideal textbook for graduate and upper-undergraduate level courses in data mining, predictive analytics, and business analytics. This new edition is also an excellent reference for analysts, researchers, and practitioners working with quantitative methods in the fields of business, finance, marketing, computer science, and information technology. “This book has by far the most comprehensive review of business analytics methods that I have ever seen, covering everything from classical approaches such as linear and logistic regression, through to modern methods like neural networks, bagging and boosting, and even much more business specific procedures such as social network analysis and text mining. If not the bible, it is at the least a definitive manual on the subject.” —Gareth M. James, University of Southern California and co-author (with Witten, Hastie and Tibshirani) of the best-selling book An Introduction to Statistical Learning, with Applications in R
Author |
: Anand J. Kulkarni |
Publisher |
: Springer Nature |
Total Pages |
: 193 |
Release |
: 2019-10-01 |
ISBN-10 |
: 9783030316723 |
ISBN-13 |
: 3030316726 |
Rating |
: 4/5 (23 Downloads) |
Synopsis Big Data Analytics in Healthcare by : Anand J. Kulkarni
This book includes state-of-the-art discussions on various issues and aspects of the implementation, testing, validation, and application of big data in the context of healthcare. The concept of big data is revolutionary, both from a technological and societal well-being standpoint. This book provides a comprehensive reference guide for engineers, scientists, and students studying/involved in the development of big data tools in the areas of healthcare and medicine. It also features a multifaceted and state-of-the-art literature review on healthcare data, its modalities, complexities, and methodologies, along with mathematical formulations. The book is divided into two main sections, the first of which discusses the challenges and opportunities associated with the implementation of big data in the healthcare sector. In turn, the second addresses the mathematical modeling of healthcare problems, as well as current and potential future big data applications and platforms.
Author |
: Matt Taddy |
Publisher |
: McGraw Hill Professional |
Total Pages |
: 350 |
Release |
: 2019-08-23 |
ISBN-10 |
: 9781260452785 |
ISBN-13 |
: 1260452786 |
Rating |
: 4/5 (85 Downloads) |
Synopsis Business Data Science: Combining Machine Learning and Economics to Optimize, Automate, and Accelerate Business Decisions by : Matt Taddy
Use machine learning to understand your customers, frame decisions, and drive value The business analytics world has changed, and Data Scientists are taking over. Business Data Science takes you through the steps of using machine learning to implement best-in-class business data science. Whether you are a business leader with a desire to go deep on data, or an engineer who wants to learn how to apply Machine Learning to business problems, you’ll find the information, insight, and tools you need to flourish in today’s data-driven economy. You’ll learn how to: Use the key building blocks of Machine Learning: sparse regularization, out-of-sample validation, and latent factor and topic modeling Understand how use ML tools in real world business problems, where causation matters more that correlation Solve data science programs by scripting in the R programming language Today’s business landscape is driven by data and constantly shifting. Companies live and die on their ability to make and implement the right decisions quickly and effectively. Business Data Science is about doing data science right. It’s about the exciting things being done around Big Data to run a flourishing business. It’s about the precepts, principals, and best practices that you need know for best-in-class business data science.
Author |
: Bansal, Sanjeev |
Publisher |
: IGI Global |
Total Pages |
: 377 |
Release |
: 2024-04-15 |
ISBN-10 |
: 9798369315996 |
ISBN-13 |
: |
Rating |
: 4/5 (96 Downloads) |
Synopsis Intelligent Optimization Techniques for Business Analytics by : Bansal, Sanjeev
Today, the convergence of cutting-edge algorithms and actionable insights in business is paramount for success. Scholars and practitioners grapple with the dilemma of optimizing data to drive efficiency, innovation, and competitiveness. The formidable challenge of effectively harnessing the immense power of intelligent optimization techniques and business analytics only increases as the volume of data grows exponentially, and the complexities of navigating the intricate landscape of business analytics becomes more daunting. This pressing issue underscores the critical need for a comprehensive solution, and Intelligent Optimization Techniques for Business Analytics is poised to provide much-needed answers. This groundbreaking book offers an all-encompassing solution to the challenges that academic scholars encounter in the pursuit of mastering the interplay between learning algorithms and intelligent optimization techniques for business analytics. Through a wealth of diverse perspectives and expert case studies, it illuminates the path to effectively implementing these advanced systems in real-world business scenarios. It caters not only to the scholarly community but also to industry professionals and policymakers, equipping them with the necessary tools and insights to excel in the realm of data-driven decision-making.