Machine Learning For Hackers
Download Machine Learning For Hackers full books in PDF, epub, and Kindle. Read online free Machine Learning For Hackers ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Drew Conway |
Publisher |
: "O'Reilly Media, Inc." |
Total Pages |
: 323 |
Release |
: 2012-02-13 |
ISBN-10 |
: 9781449330538 |
ISBN-13 |
: 1449330533 |
Rating |
: 4/5 (38 Downloads) |
Synopsis Machine Learning for Hackers by : Drew Conway
If you’re an experienced programmer interested in crunching data, this book will get you started with machine learning—a toolkit of algorithms that enables computers to train themselves to automate useful tasks. Authors Drew Conway and John Myles White help you understand machine learning and statistics tools through a series of hands-on case studies, instead of a traditional math-heavy presentation. Each chapter focuses on a specific problem in machine learning, such as classification, prediction, optimization, and recommendation. Using the R programming language, you’ll learn how to analyze sample datasets and write simple machine learning algorithms. Machine Learning for Hackers is ideal for programmers from any background, including business, government, and academic research. Develop a naïve Bayesian classifier to determine if an email is spam, based only on its text Use linear regression to predict the number of page views for the top 1,000 websites Learn optimization techniques by attempting to break a simple letter cipher Compare and contrast U.S. Senators statistically, based on their voting records Build a “whom to follow” recommendation system from Twitter data
Author |
: Peter Harrington |
Publisher |
: Simon and Schuster |
Total Pages |
: 558 |
Release |
: 2012-04-03 |
ISBN-10 |
: 9781638352457 |
ISBN-13 |
: 1638352453 |
Rating |
: 4/5 (57 Downloads) |
Synopsis Machine Learning in Action by : Peter Harrington
Summary Machine Learning in Action is unique book that blends the foundational theories of machine learning with the practical realities of building tools for everyday data analysis. You'll use the flexible Python programming language to build programs that implement algorithms for data classification, forecasting, recommendations, and higher-level features like summarization and simplification. About the Book A machine is said to learn when its performance improves with experience. Learning requires algorithms and programs that capture data and ferret out the interestingor useful patterns. Once the specialized domain of analysts and mathematicians, machine learning is becoming a skill needed by many. Machine Learning in Action is a clearly written tutorial for developers. It avoids academic language and takes you straight to the techniques you'll use in your day-to-day work. Many (Python) examples present the core algorithms of statistical data processing, data analysis, and data visualization in code you can reuse. You'll understand the concepts and how they fit in with tactical tasks like classification, forecasting, recommendations, and higher-level features like summarization and simplification. Readers need no prior experience with machine learning or statistical processing. Familiarity with Python is helpful. Purchase of the print book comes with an offer of a free PDF, ePub, and Kindle eBook from Manning. Also available is all code from the book. What's Inside A no-nonsense introduction Examples showing common ML tasks Everyday data analysis Implementing classic algorithms like Apriori and Adaboos Table of Contents PART 1 CLASSIFICATION Machine learning basics Classifying with k-Nearest Neighbors Splitting datasets one feature at a time: decision trees Classifying with probability theory: naïve Bayes Logistic regression Support vector machines Improving classification with the AdaBoost meta algorithm PART 2 FORECASTING NUMERIC VALUES WITH REGRESSION Predicting numeric values: regression Tree-based regression PART 3 UNSUPERVISED LEARNING Grouping unlabeled items using k-means clustering Association analysis with the Apriori algorithm Efficiently finding frequent itemsets with FP-growth PART 4 ADDITIONAL TOOLS Using principal component analysis to simplify data Simplifying data with the singular value decomposition Big data and MapReduce
Author |
: Cameron Davidson-Pilon |
Publisher |
: Addison-Wesley Professional |
Total Pages |
: 551 |
Release |
: 2015-09-30 |
ISBN-10 |
: 9780133902921 |
ISBN-13 |
: 0133902927 |
Rating |
: 4/5 (21 Downloads) |
Synopsis Bayesian Methods for Hackers by : Cameron Davidson-Pilon
Master Bayesian Inference through Practical Examples and Computation–Without Advanced Mathematical Analysis Bayesian methods of inference are deeply natural and extremely powerful. However, most discussions of Bayesian inference rely on intensely complex mathematical analyses and artificial examples, making it inaccessible to anyone without a strong mathematical background. Now, though, Cameron Davidson-Pilon introduces Bayesian inference from a computational perspective, bridging theory to practice–freeing you to get results using computing power. Bayesian Methods for Hackers illuminates Bayesian inference through probabilistic programming with the powerful PyMC language and the closely related Python tools NumPy, SciPy, and Matplotlib. Using this approach, you can reach effective solutions in small increments, without extensive mathematical intervention. Davidson-Pilon begins by introducing the concepts underlying Bayesian inference, comparing it with other techniques and guiding you through building and training your first Bayesian model. Next, he introduces PyMC through a series of detailed examples and intuitive explanations that have been refined after extensive user feedback. You’ll learn how to use the Markov Chain Monte Carlo algorithm, choose appropriate sample sizes and priors, work with loss functions, and apply Bayesian inference in domains ranging from finance to marketing. Once you’ve mastered these techniques, you’ll constantly turn to this guide for the working PyMC code you need to jumpstart future projects. Coverage includes • Learning the Bayesian “state of mind” and its practical implications • Understanding how computers perform Bayesian inference • Using the PyMC Python library to program Bayesian analyses • Building and debugging models with PyMC • Testing your model’s “goodness of fit” • Opening the “black box” of the Markov Chain Monte Carlo algorithm to see how and why it works • Leveraging the power of the “Law of Large Numbers” • Mastering key concepts, such as clustering, convergence, autocorrelation, and thinning • Using loss functions to measure an estimate’s weaknesses based on your goals and desired outcomes • Selecting appropriate priors and understanding how their influence changes with dataset size • Overcoming the “exploration versus exploitation” dilemma: deciding when “pretty good” is good enough • Using Bayesian inference to improve A/B testing • Solving data science problems when only small amounts of data are available Cameron Davidson-Pilon has worked in many areas of applied mathematics, from the evolutionary dynamics of genes and diseases to stochastic modeling of financial prices. His contributions to the open source community include lifelines, an implementation of survival analysis in Python. Educated at the University of Waterloo and at the Independent University of Moscow, he currently works with the online commerce leader Shopify.
Author |
: Dr Emmanuel Tsukerman |
Publisher |
: Independently Published |
Total Pages |
: 100 |
Release |
: 2020-08-15 |
ISBN-10 |
: 9798675540396 |
ISBN-13 |
: |
Rating |
: 4/5 (96 Downloads) |
Synopsis Machine Learning for Red Team Hackers by : Dr Emmanuel Tsukerman
Everyone knows that AI and machine learning are the future of penetration testing. Large cybersecurity enterprises talk about hackers automating and smartening their tools; The newspapers report on cybercriminals utilizing voice transfer technology to impersonate CEOs; The media warns us about the implications of DeepFakes in politics and beyond...This book finally teaches you how to use Machine Learning for Penetration Testing.This book will be teaching you, in a hands-on and practical manner, how to use the Machine Learning to perform penetration testing attacks, and how to perform penetration testing attacks ON Machine Learning systems. It will teach you techniques that few hackers or security experts know about.You will learn- how to supercharge your vulnerability fuzzing using Machine Learning.- how to evade Machine Learning malware classifiers.- how to perform adversarial attacks on commercially-available Machine Learning as a Service models.- how to bypass CAPTCHAs using Machine Learning.- how to create Deepfakes.- how to poison, backdoor and steal Machine Learning models.And you will solidify your slick new skills in fun hands-on assignments.
Author |
: Kevin P. Murphy |
Publisher |
: MIT Press |
Total Pages |
: 858 |
Release |
: 2022-03-01 |
ISBN-10 |
: 9780262369305 |
ISBN-13 |
: 0262369303 |
Rating |
: 4/5 (05 Downloads) |
Synopsis Probabilistic Machine Learning by : Kevin P. Murphy
A detailed and up-to-date introduction to machine learning, presented through the unifying lens of probabilistic modeling and Bayesian decision theory. This book offers a detailed and up-to-date introduction to machine learning (including deep learning) through the unifying lens of probabilistic modeling and Bayesian decision theory. The book covers mathematical background (including linear algebra and optimization), basic supervised learning (including linear and logistic regression and deep neural networks), as well as more advanced topics (including transfer learning and unsupervised learning). End-of-chapter exercises allow students to apply what they have learned, and an appendix covers notation. Probabilistic Machine Learning grew out of the author’s 2012 book, Machine Learning: A Probabilistic Perspective. More than just a simple update, this is a completely new book that reflects the dramatic developments in the field since 2012, most notably deep learning. In addition, the new book is accompanied by online Python code, using libraries such as scikit-learn, JAX, PyTorch, and Tensorflow, which can be used to reproduce nearly all the figures; this code can be run inside a web browser using cloud-based notebooks, and provides a practical complement to the theoretical topics discussed in the book. This introductory text will be followed by a sequel that covers more advanced topics, taking the same probabilistic approach.
Author |
: Isabella Romeo |
Publisher |
: Sherwood Forest Books |
Total Pages |
: 284 |
Release |
: 2018-07-14 |
ISBN-10 |
: 0996686045 |
ISBN-13 |
: 9780996686044 |
Rating |
: 4/5 (45 Downloads) |
Synopsis Machine Learning for Hackers by : Isabella Romeo
Introduction to machine learning using R through the jupyter shell. Intended for hackers, scientists, and engineers, who want to get a quick start in the subject. Level: advanced community college and intermediate college students. Reads like a lab manual.
Author |
: Emmanuel Tsukerman |
Publisher |
: Packt Publishing Ltd |
Total Pages |
: 338 |
Release |
: 2019-11-25 |
ISBN-10 |
: 9781838556341 |
ISBN-13 |
: 1838556346 |
Rating |
: 4/5 (41 Downloads) |
Synopsis Machine Learning for Cybersecurity Cookbook by : Emmanuel Tsukerman
Learn how to apply modern AI to create powerful cybersecurity solutions for malware, pentesting, social engineering, data privacy, and intrusion detection Key FeaturesManage data of varying complexity to protect your system using the Python ecosystemApply ML to pentesting, malware, data privacy, intrusion detection system(IDS) and social engineeringAutomate your daily workflow by addressing various security challenges using the recipes covered in the bookBook Description Organizations today face a major threat in terms of cybersecurity, from malicious URLs to credential reuse, and having robust security systems can make all the difference. With this book, you'll learn how to use Python libraries such as TensorFlow and scikit-learn to implement the latest artificial intelligence (AI) techniques and handle challenges faced by cybersecurity researchers. You'll begin by exploring various machine learning (ML) techniques and tips for setting up a secure lab environment. Next, you'll implement key ML algorithms such as clustering, gradient boosting, random forest, and XGBoost. The book will guide you through constructing classifiers and features for malware, which you'll train and test on real samples. As you progress, you'll build self-learning, reliant systems to handle cybersecurity tasks such as identifying malicious URLs, spam email detection, intrusion detection, network protection, and tracking user and process behavior. Later, you'll apply generative adversarial networks (GANs) and autoencoders to advanced security tasks. Finally, you'll delve into secure and private AI to protect the privacy rights of consumers using your ML models. By the end of this book, you'll have the skills you need to tackle real-world problems faced in the cybersecurity domain using a recipe-based approach. What you will learnLearn how to build malware classifiers to detect suspicious activitiesApply ML to generate custom malware to pentest your securityUse ML algorithms with complex datasets to implement cybersecurity conceptsCreate neural networks to identify fake videos and imagesSecure your organization from one of the most popular threats – insider threatsDefend against zero-day threats by constructing an anomaly detection systemDetect web vulnerabilities effectively by combining Metasploit and MLUnderstand how to train a model without exposing the training dataWho this book is for This book is for cybersecurity professionals and security researchers who are looking to implement the latest machine learning techniques to boost computer security, and gain insights into securing an organization using red and blue team ML. This recipe-based book will also be useful for data scientists and machine learning developers who want to experiment with smart techniques in the cybersecurity domain. Working knowledge of Python programming and familiarity with cybersecurity fundamentals will help you get the most out of this book.
Author |
: Toby Segaran |
Publisher |
: "O'Reilly Media, Inc." |
Total Pages |
: 361 |
Release |
: 2007-08-16 |
ISBN-10 |
: 9780596550684 |
ISBN-13 |
: 0596550685 |
Rating |
: 4/5 (84 Downloads) |
Synopsis Programming Collective Intelligence by : Toby Segaran
Want to tap the power behind search rankings, product recommendations, social bookmarking, and online matchmaking? This fascinating book demonstrates how you can build Web 2.0 applications to mine the enormous amount of data created by people on the Internet. With the sophisticated algorithms in this book, you can write smart programs to access interesting datasets from other web sites, collect data from users of your own applications, and analyze and understand the data once you've found it. Programming Collective Intelligence takes you into the world of machine learning and statistics, and explains how to draw conclusions about user experience, marketing, personal tastes, and human behavior in general -- all from information that you and others collect every day. Each algorithm is described clearly and concisely with code that can immediately be used on your web site, blog, Wiki, or specialized application. This book explains: Collaborative filtering techniques that enable online retailers to recommend products or media Methods of clustering to detect groups of similar items in a large dataset Search engine features -- crawlers, indexers, query engines, and the PageRank algorithm Optimization algorithms that search millions of possible solutions to a problem and choose the best one Bayesian filtering, used in spam filters for classifying documents based on word types and other features Using decision trees not only to make predictions, but to model the way decisions are made Predicting numerical values rather than classifications to build price models Support vector machines to match people in online dating sites Non-negative matrix factorization to find the independent features in a dataset Evolving intelligence for problem solving -- how a computer develops its skill by improving its own code the more it plays a game Each chapter includes exercises for extending the algorithms to make them more powerful. Go beyond simple database-backed applications and put the wealth of Internet data to work for you. "Bravo! I cannot think of a better way for a developer to first learn these algorithms and methods, nor can I think of a better way for me (an old AI dog) to reinvigorate my knowledge of the details." -- Dan Russell, Google "Toby's book does a great job of breaking down the complex subject matter of machine-learning algorithms into practical, easy-to-understand examples that can be directly applied to analysis of social interaction across the Web today. If I had this book two years ago, it would have saved precious time going down some fruitless paths." -- Tim Wolters, CTO, Collective Intellect
Author |
: Drew Conway |
Publisher |
: "O'Reilly Media, Inc." |
Total Pages |
: 145 |
Release |
: 2011-10-25 |
ISBN-10 |
: 9781449320706 |
ISBN-13 |
: 1449320708 |
Rating |
: 4/5 (06 Downloads) |
Synopsis Machine Learning for Email by : Drew Conway
If you’re an experienced programmer willing to crunch data, this concise guide will show you how to use machine learning to work with email. You’ll learn how to write algorithms that automatically sort and redirect email based on statistical patterns. Authors Drew Conway and John Myles White approach the process in a practical fashion, using a case-study driven approach rather than a traditional math-heavy presentation. This book also includes a short tutorial on using the popular R language to manipulate and analyze data. You’ll get clear examples for analyzing sample data and writing machine learning programs with R. Mine email content with R functions, using a collection of sample files Analyze the data and use the results to write a Bayesian spam classifier Rank email by importance, using factors such as thread activity Use your email ranking analysis to write a priority inbox program Test your classifier and priority inbox with a separate email sample set
Author |
: Ericsson Marin |
Publisher |
: Cambridge University Press |
Total Pages |
: 225 |
Release |
: 2021-04-29 |
ISBN-10 |
: 9781108491594 |
ISBN-13 |
: 1108491596 |
Rating |
: 4/5 (94 Downloads) |
Synopsis Exploring Malicious Hacker Communities by : Ericsson Marin
Cutting-edge models for proactive cybersecurity, applying AI, learning, and network analysis to information mined from hacker communities.