Machine Learning for Environmental Monitoring in Wireless Sensor Networks

Machine Learning for Environmental Monitoring in Wireless Sensor Networks
Author :
Publisher : IGI Global
Total Pages : 496
Release :
ISBN-10 : 9798369339411
ISBN-13 :
Rating : 4/5 (11 Downloads)

Synopsis Machine Learning for Environmental Monitoring in Wireless Sensor Networks by : Mahalle, Parikshit N.

Today, data fuels everything we do in a highly connected world. However, traditional environmental monitoring methods often fail to provide timely and accurate data for effective decision-making in today's rapidly changing ecosystems. The reliance on manual data collection and outdated technologies results in gaps in data coverage, making it challenging to detect and respond to environmental changes in real time. Additionally, integration between monitoring systems and advanced data analysis tools is necessary to derive actionable insights from collected data. As a result, environmental managers and policymakers face significant challenges in effectively monitoring, managing, and conserving natural resources in a rapidly evolving environment. Machine Learning for Environmental Monitoring in Wireless Sensor Networks offers a comprehensive solution to the limitations of traditional environmental monitoring methods. By harnessing the power of Wireless Sensor Networks (WSNs) and advanced machine learning algorithms, this book presents a novel approach to ecological monitoring that enables real-time, high-resolution data collection and analysis. By integrating WSNs and machine learning, environmental stakeholders can gain deeper insights into complex ecological processes, allowing for more informed decision-making and proactive management of natural resources.

Evolutionary Computing and Mobile Sustainable Networks

Evolutionary Computing and Mobile Sustainable Networks
Author :
Publisher : Springer Nature
Total Pages : 975
Release :
ISBN-10 : 9789811552588
ISBN-13 : 9811552584
Rating : 4/5 (88 Downloads)

Synopsis Evolutionary Computing and Mobile Sustainable Networks by : V. Suma

This book features selected research papers presented at the International Conference on Evolutionary Computing and Mobile Sustainable Networks (ICECMSN 2020), held at the Sir M. Visvesvaraya Institute of Technology on 20–21 February 2020. Discussing advances in evolutionary computing technologies, including swarm intelligence algorithms and other evolutionary algorithm paradigms which are emerging as widely accepted descriptors for mobile sustainable networks virtualization, optimization and automation, this book is a valuable resource for researchers in the field of evolutionary computing and mobile sustainable networks.

Learning TensorFlow

Learning TensorFlow
Author :
Publisher : "O'Reilly Media, Inc."
Total Pages : 242
Release :
ISBN-10 : 9781491978481
ISBN-13 : 1491978481
Rating : 4/5 (81 Downloads)

Synopsis Learning TensorFlow by : Tom Hope

Roughly inspired by the human brain, deep neural networks trained with large amounts of data can solve complex tasks with unprecedented accuracy. This practical book provides an end-to-end guide to TensorFlow, the leading open source software library that helps you build and train neural networks for computer vision, natural language processing (NLP), speech recognition, and general predictive analytics. Authors Tom Hope, Yehezkel Resheff, and Itay Lieder provide a hands-on approach to TensorFlow fundamentals for a broad technical audience—from data scientists and engineers to students and researchers. You’ll begin by working through some basic examples in TensorFlow before diving deeper into topics such as neural network architectures, TensorBoard visualization, TensorFlow abstraction libraries, and multithreaded input pipelines. Once you finish this book, you’ll know how to build and deploy production-ready deep learning systems in TensorFlow. Get up and running with TensorFlow, rapidly and painlessly Learn how to use TensorFlow to build deep learning models from the ground up Train popular deep learning models for computer vision and NLP Use extensive abstraction libraries to make development easier and faster Learn how to scale TensorFlow, and use clusters to distribute model training Deploy TensorFlow in a production setting

2021 6th International Conference on Communication and Electronics Systems (ICCES)

2021 6th International Conference on Communication and Electronics Systems (ICCES)
Author :
Publisher :
Total Pages :
Release :
ISBN-10 : 1665411821
ISBN-13 : 9781665411820
Rating : 4/5 (21 Downloads)

Synopsis 2021 6th International Conference on Communication and Electronics Systems (ICCES) by : IEEE Staff

Recent years have witnessed the deployment of ever expanding range of digital electronics and communication technologies to enable innovative opportunities for meeting the demands posed by both economy and society The increasing computing and communication technologies and the widespread availability of electronics and wireless networking technologies have lowered the traditional barriers of science and technology by processing large amounts of data and also enhancing its accessibility and exchangeability Henceforth deploying new innovative technologies in this domain will even more strengthen the bond between the research and real time applications, which can further reshape the way people socialize and interact with each other

Multisensor Data Fusion and Machine Learning for Environmental Remote Sensing

Multisensor Data Fusion and Machine Learning for Environmental Remote Sensing
Author :
Publisher : CRC Press
Total Pages : 627
Release :
ISBN-10 : 9781351650632
ISBN-13 : 1351650637
Rating : 4/5 (32 Downloads)

Synopsis Multisensor Data Fusion and Machine Learning for Environmental Remote Sensing by : Ni-Bin Chang

In the last few years the scientific community has realized that obtaining a better understanding of interactions between natural systems and the man-made environment across different scales demands more research efforts in remote sensing. An integrated Earth system observatory that merges surface-based, air-borne, space-borne, and even underground sensors with comprehensive and predictive capabilities indicates promise for revolutionizing the study of global water, energy, and carbon cycles as well as land use and land cover changes. The aim of this book is to present a suite of relevant concepts, tools, and methods of integrated multisensor data fusion and machine learning technologies to promote environmental sustainability. The process of machine learning for intelligent feature extraction consists of regular, deep, and fast learning algorithms. The niche for integrating data fusion and machine learning for remote sensing rests upon the creation of a new scientific architecture in remote sensing science that is designed to support numerical as well as symbolic feature extraction managed by several cognitively oriented machine learning tasks at finer scales. By grouping a suite of satellites with similar nature in platform design, data merging may come to help for cloudy pixel reconstruction over the space domain or concatenation of time series images over the time domain, or even both simultaneously. Organized in 5 parts, from Fundamental Principles of Remote Sensing; Feature Extraction for Remote Sensing; Image and Data Fusion for Remote Sensing; Integrated Data Merging, Data Reconstruction, Data Fusion, and Machine Learning; to Remote Sensing for Environmental Decision Analysis, the book will be a useful reference for graduate students, academic scholars, and working professionals who are involved in the study of Earth systems and the environment for a sustainable future. The new knowledge in this book can be applied successfully in many areas of environmental science and engineering.

Energy-Efficient Underwater Wireless Communications and Networking

Energy-Efficient Underwater Wireless Communications and Networking
Author :
Publisher : IGI Global
Total Pages : 339
Release :
ISBN-10 : 9781799836421
ISBN-13 : 1799836428
Rating : 4/5 (21 Downloads)

Synopsis Energy-Efficient Underwater Wireless Communications and Networking by : Goyal, Nitin

Underwater wireless sensor networks (UWSN) are envisioned as an aquatic medium for a variety of applications including oceanographic data collection, disaster management or prevention, assisted navigation, attack protection, and pollution monitoring. Similar to terrestrial wireless sensor networks (WSN), UWSNs consist of sensor nodes that collect the information and pass it to a base station; however, researchers have to face many challenges in executing the network in an aquatic medium. Energy-Efficient Underwater Wireless Communications and Networking is a crucial reference source that covers existing and future possibilities of the area as well as the current challenges presented in the implementation of underwater sensor networks. While highlighting topics such as digital signal processing, underwater localization, and acoustic channel modeling, this publication is ideally designed for machine learning experts, IT specialists, government agencies, oceanic engineers, communication experts, researchers, academicians, students, and environmental agencies concerned with optimized data flow in communication network, securing assets, and mitigating security attacks.

Machine Learning Approach for Cloud Data Analytics in IoT

Machine Learning Approach for Cloud Data Analytics in IoT
Author :
Publisher : John Wiley & Sons
Total Pages : 528
Release :
ISBN-10 : 9781119785859
ISBN-13 : 1119785855
Rating : 4/5 (59 Downloads)

Synopsis Machine Learning Approach for Cloud Data Analytics in IoT by : Sachi Nandan Mohanty

Machine Learning Approach for Cloud Data Analytics in IoT The book covers the multidimensional perspective of machine learning through the perspective of cloud computing and Internet of Things ranging from fundamentals to advanced applications Sustainable computing paradigms like cloud and fog are capable of handling issues related to performance, storage and processing, maintenance, security, efficiency, integration, cost, energy and latency in an expeditious manner. In order to expedite decision-making involved in the complex computation and processing of collected data, IoT devices are connected to the cloud or fog environment. Since machine learning as a service provides the best support in business intelligence, organizations have been making significant investments in this technology. Machine Learning Approach for Cloud Data Analytics in IoT elucidates some of the best practices and their respective outcomes in cloud and fog computing environments. It focuses on all the various research issues related to big data storage and analysis, large-scale data processing, knowledge discovery and knowledge management, computational intelligence, data security and privacy, data representation and visualization, and data analytics. The featured technologies presented in the book optimizes various industry processes using business intelligence in engineering and technology. Light is also shed on cloud-based embedded software development practices to integrate complex machines so as to increase productivity and reduce operational costs. The various practices of data science and analytics which are used in all sectors to understand big data and analyze massive data patterns are also detailed in the book.

Green Internet of Things and Machine Learning

Green Internet of Things and Machine Learning
Author :
Publisher : John Wiley & Sons
Total Pages : 279
Release :
ISBN-10 : 9781119793120
ISBN-13 : 1119793122
Rating : 4/5 (20 Downloads)

Synopsis Green Internet of Things and Machine Learning by : Roshani Raut

Health Economics and Financing Encapsulates different case studies where green-IOT and machine learning can be used for making significant progress towards improvising the quality of life and sustainable environment. The Internet of Things (IoT) is an evolving idea which is responsible for connecting billions of devices that acquire, perceive, and communicate data from their surroundings. Because this transmission of data uses significant energy, improving energy efficiency in IOT devices is a significant topic for research. The green internet of things (G-IoT) makes it possible for IoT devices to use less energy since intelligent processing and analysis are fundamental to constructing smart IOT applications with large data sets. Machine learning (ML) algorithms that can predict sustainable energy consumption can be used to prepare guidelines to make IoT device implementation easier. Green Internet of Things and Machine Learning lays the foundation of in-depth analysis of principles of Green-Internet of Things (G-IoT) using machine learning. It outlines various green ICT technologies, explores the potential towards diverse real-time areas, as well as highlighting various challenges and obstacles towards the implementation of G-IoT in the real world. Also, this book provides insights on how the machine learning and green IOT will impact various applications: It covers the Green-IOT and ML-based smart computing, ML techniques for reducing energy consumption in IOT devices, case studies of G-IOT and ML in the agricultural field, smart farming, smart transportation, banking industry and healthcare. Audience The book will be helpful for research scholars and researchers in the fields of computer science and engineering, information technology, electronics and electrical engineering. Industry experts, particularly in R&D divisions, can use this book as their problem-solving guide.

Machine Learning and Big Data Analytics

Machine Learning and Big Data Analytics
Author :
Publisher : Springer Nature
Total Pages : 552
Release :
ISBN-10 : 9783031151750
ISBN-13 : 3031151755
Rating : 4/5 (50 Downloads)

Synopsis Machine Learning and Big Data Analytics by : Rajiv Misra

This edited volume on machine learning and big data analytics (Proceedings of ICMLBDA 2022) is intended to be used as a reference book for researchers and professionals to share their research and reports of new technologies and applications in Machine Learning and Big Data Analytics like biometric Recognition Systems, medical diagnosis, industries, telecommunications, AI Petri Nets Model-Based Diagnosis, gaming, stock trading, Intelligent Aerospace Systems, robot control, law, remote sensing and scientific discovery agents and multiagent systems; and natural language and Web intelligence. The intent of this book is to provide awareness of algorithms used for machine learning and big data in the advanced Scientific Technologies, provide a correlation of multidisciplinary areas and become a point of great interest for Data Scientists, systems architects, developers, new researchers and graduate level students. This volume provides cutting-edge research from around the globe on this field. Current status, trends, future directions, opportunities, etc. are discussed, making it friendly for beginners and young researchers.

Recent Developments in Machine Learning and Data Analytics

Recent Developments in Machine Learning and Data Analytics
Author :
Publisher : Springer
Total Pages : 525
Release :
ISBN-10 : 9789811312809
ISBN-13 : 981131280X
Rating : 4/5 (09 Downloads)

Synopsis Recent Developments in Machine Learning and Data Analytics by : Jugal Kalita

This book presents high-quality papers from an international forum for research on computational approaches to learning. It includes current research and findings from various research labs, universities and institutions that may lead to development of marketable products. It also provides solid support for these findings in the form of empirical studies, theoretical analysis, or comparison to psychological phenomena. Further, it features work that shows how to apply learning methods to solve important application problems as well as how machine learning research is conducted. The book is divided into two main parts: Machine Learning Techniques, which covers machine learning-related research and findings; and, Data Analytics, which introduces recent developments in this domain. Additionally, the book includes work on data analytics using machine learning techniques.