Machine Learning For Data Streams
Download Machine Learning For Data Streams full books in PDF, epub, and Kindle. Read online free Machine Learning For Data Streams ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Albert Bifet |
Publisher |
: MIT Press |
Total Pages |
: 262 |
Release |
: 2018-03-16 |
ISBN-10 |
: 9780262346054 |
ISBN-13 |
: 0262346052 |
Rating |
: 4/5 (54 Downloads) |
Synopsis Machine Learning for Data Streams by : Albert Bifet
A hands-on approach to tasks and techniques in data stream mining and real-time analytics, with examples in MOA, a popular freely available open-source software framework. Today many information sources—including sensor networks, financial markets, social networks, and healthcare monitoring—are so-called data streams, arriving sequentially and at high speed. Analysis must take place in real time, with partial data and without the capacity to store the entire data set. This book presents algorithms and techniques used in data stream mining and real-time analytics. Taking a hands-on approach, the book demonstrates the techniques using MOA (Massive Online Analysis), a popular, freely available open-source software framework, allowing readers to try out the techniques after reading the explanations. The book first offers a brief introduction to the topic, covering big data mining, basic methodologies for mining data streams, and a simple example of MOA. More detailed discussions follow, with chapters on sketching techniques, change, classification, ensemble methods, regression, clustering, and frequent pattern mining. Most of these chapters include exercises, an MOA-based lab session, or both. Finally, the book discusses the MOA software, covering the MOA graphical user interface, the command line, use of its API, and the development of new methods within MOA. The book will be an essential reference for readers who want to use data stream mining as a tool, researchers in innovation or data stream mining, and programmers who want to create new algorithms for MOA.
Author |
: João Gama |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 486 |
Release |
: 2007-10-11 |
ISBN-10 |
: 9783540736783 |
ISBN-13 |
: 3540736786 |
Rating |
: 4/5 (83 Downloads) |
Synopsis Learning from Data Streams by : João Gama
Processing data streams has raised new research challenges over the last few years. This book provides the reader with a comprehensive overview of stream data processing, including famous prototype implementations like the Nile system and the TinyOS operating system. Applications in security, the natural sciences, and education are presented. The huge bibliography offers an excellent starting point for further reading and future research.
Author |
: Sebastian Maurice |
Publisher |
: |
Total Pages |
: 0 |
Release |
: 2021 |
ISBN-10 |
: 148427024X |
ISBN-13 |
: 9781484270240 |
Rating |
: 4/5 (4X Downloads) |
Synopsis Transactional Machine Learning with Data Streams and AutoML by : Sebastian Maurice
Understand how to apply auto machine learning to data streams and create transactional machine learning (TML) solutions that are frictionless (require minimal to no human intervention) and elastic (machine learning solutions that can scale up or down by controlling the number of data streams, algorithms, and users of the insights). This book will strengthen your knowledge of the inner workings of TML solutions using data streams with auto machine learning integrated with Apache Kafka. Transactional Machine Learning with Data Streams and AutoML introduces the industry challenges with applying machine learning to data streams. You will learn the framework that will help you in choosing business problems that are best suited for TML. You will also see how to measure the business value of TML solutions. You will then learn the technical components of TML solutions, including the reference and technical architecture of a TML solution. This book also presents a TML solution template that will make it easy for you to quickly start building your own TML solutions. Specifically, you are given access to a TML Python library and integration technologies for download. You will also learn how TML will evolve in the future, and the growing need by organizations for deeper insights from data streams. By the end of the book, you will have a solid understanding of TML. You will know how to build TML solutions with all the necessary details, and all the resources at your fingertips. You will: Discover transactional machine learning Measure the business value of TML Choose TML use cases Design technical architecture of TML solutions with Apache Kafka Work with the technologies used to build TML solutions Build transactional machine learning solutions with hands-on code together with Apache Kafka in the cloud.
Author |
: Joao Gama |
Publisher |
: CRC Press |
Total Pages |
: 256 |
Release |
: 2010-05-25 |
ISBN-10 |
: 9781439826126 |
ISBN-13 |
: 1439826129 |
Rating |
: 4/5 (26 Downloads) |
Synopsis Knowledge Discovery from Data Streams by : Joao Gama
Since the beginning of the Internet age and the increased use of ubiquitous computing devices, the large volume and continuous flow of distributed data have imposed new constraints on the design of learning algorithms. Exploring how to extract knowledge structures from evolving and time-changing data, Knowledge Discovery from Data Streams presents
Author |
: Albert Bifet |
Publisher |
: IOS Press |
Total Pages |
: 224 |
Release |
: 2010 |
ISBN-10 |
: 9781607500902 |
ISBN-13 |
: 1607500906 |
Rating |
: 4/5 (02 Downloads) |
Synopsis Adaptive Stream Mining by : Albert Bifet
This book is a significant contribution to the subject of mining time-changing data streams and addresses the design of learning algorithms for this purpose. It introduces new contributions on several different aspects of the problem, identifying research opportunities and increasing the scope for applications. It also includes an in-depth study of stream mining and a theoretical analysis of proposed methods and algorithms. The first section is concerned with the use of an adaptive sliding window algorithm (ADWIN). Since this has rigorous performance guarantees, using it in place of counters or accumulators, it offers the possibility of extending such guarantees to learning and mining algorithms not initially designed for drifting data. Testing with several methods, including Naïve Bayes, clustering, decision trees and ensemble methods, is discussed as well. The second part of the book describes a formal study of connected acyclic graphs, or 'trees', from the point of view of closure-based mining, presenting efficient algorithms for subtree testing and for mining ordered and unordered frequent closed trees. Lastly, a general methodology to identify closed patterns in a data stream is outlined. This is applied to develop an incremental method, a sliding-window based method, and a method that mines closed trees adaptively from data streams. These are used to introduce classification methods for tree data streams.
Author |
: Sayan Putatunda |
Publisher |
: Apress |
Total Pages |
: 118 |
Release |
: 2021-04-09 |
ISBN-10 |
: 1484268660 |
ISBN-13 |
: 9781484268667 |
Rating |
: 4/5 (60 Downloads) |
Synopsis Practical Machine Learning for Streaming Data with Python by : Sayan Putatunda
Design, develop, and validate machine learning models with streaming data using the Scikit-Multiflow framework. This book is a quick start guide for data scientists and machine learning engineers looking to implement machine learning models for streaming data with Python to generate real-time insights. You'll start with an introduction to streaming data, the various challenges associated with it, some of its real-world business applications, and various windowing techniques. You'll then examine incremental and online learning algorithms, and the concept of model evaluation with streaming data and get introduced to the Scikit-Multiflow framework in Python. This is followed by a review of the various change detection/concept drift detection algorithms and the implementation of various datasets using Scikit-Multiflow. Introduction to the various supervised and unsupervised algorithms for streaming data, and their implementation on various datasets using Python are also covered. The book concludes by briefly covering other open-source tools available for streaming data such as Spark, MOA (Massive Online Analysis), Kafka, and more. What You'll Learn Understand machine learning with streaming data concepts Review incremental and online learning Develop models for detecting concept drift Explore techniques for classification, regression, and ensemble learning in streaming data contexts Apply best practices for debugging and validating machine learning models in streaming data context Get introduced to other open-source frameworks for handling streaming data. Who This Book Is For Machine learning engineers and data science professionals
Author |
: Jure Leskovec |
Publisher |
: Cambridge University Press |
Total Pages |
: 480 |
Release |
: 2014-11-13 |
ISBN-10 |
: 9781107077232 |
ISBN-13 |
: 1107077230 |
Rating |
: 4/5 (32 Downloads) |
Synopsis Mining of Massive Datasets by : Jure Leskovec
Now in its second edition, this book focuses on practical algorithms for mining data from even the largest datasets.
Author |
: Joao Gama |
Publisher |
: Springer Nature |
Total Pages |
: 317 |
Release |
: 2021-01-09 |
ISBN-10 |
: 9783030667702 |
ISBN-13 |
: 3030667707 |
Rating |
: 4/5 (02 Downloads) |
Synopsis IoT Streams for Data-Driven Predictive Maintenance and IoT, Edge, and Mobile for Embedded Machine Learning by : Joao Gama
This book constitutes selected papers from the Second International Workshop on IoT Streams for Data-Driven Predictive Maintenance, IoT Streams 2020, and First International Workshop on IoT, Edge, and Mobile for Embedded Machine Learning, ITEM 2020, co-located with ECML/PKDD 2020 and held in September 2020. Due to the COVID-19 pandemic the workshops were held online. The 21 full papers and 3 short papers presented in this volume were thoroughly reviewed and selected from 35 submissions and are organized according to the workshops and their topics: IoT Streams 2020: Stream Learning; Feature Learning; ITEM 2020: Unsupervised Machine Learning; Hardware; Methods; Quantization.
Author |
: Albert Bifet |
Publisher |
: MIT Press |
Total Pages |
: 289 |
Release |
: 2023-05-09 |
ISBN-10 |
: 9780262547833 |
ISBN-13 |
: 026254783X |
Rating |
: 4/5 (33 Downloads) |
Synopsis Machine Learning for Data Streams by : Albert Bifet
A hands-on approach to tasks and techniques in data stream mining and real-time analytics, with examples in MOA, a popular freely available open-source software framework. Today many information sources—including sensor networks, financial markets, social networks, and healthcare monitoring—are so-called data streams, arriving sequentially and at high speed. Analysis must take place in real time, with partial data and without the capacity to store the entire data set. This book presents algorithms and techniques used in data stream mining and real-time analytics. Taking a hands-on approach, the book demonstrates the techniques using MOA (Massive Online Analysis), a popular, freely available open-source software framework, allowing readers to try out the techniques after reading the explanations. The book first offers a brief introduction to the topic, covering big data mining, basic methodologies for mining data streams, and a simple example of MOA. More detailed discussions follow, with chapters on sketching techniques, change, classification, ensemble methods, regression, clustering, and frequent pattern mining. Most of these chapters include exercises, an MOA-based lab session, or both. Finally, the book discusses the MOA software, covering the MOA graphical user interface, the command line, use of its API, and the development of new methods within MOA. The book will be an essential reference for readers who want to use data stream mining as a tool, researchers in innovation or data stream mining, and programmers who want to create new algorithms for MOA.
Author |
: Rohit Raja |
Publisher |
: John Wiley & Sons |
Total Pages |
: 500 |
Release |
: 2022-03-02 |
ISBN-10 |
: 9781119791782 |
ISBN-13 |
: 1119791782 |
Rating |
: 4/5 (82 Downloads) |
Synopsis Data Mining and Machine Learning Applications by : Rohit Raja
DATA MINING AND MACHINE LEARNING APPLICATIONS The book elaborates in detail on the current needs of data mining and machine learning and promotes mutual understanding among research in different disciplines, thus facilitating research development and collaboration. Data, the latest currency of today’s world, is the new gold. In this new form of gold, the most beautiful jewels are data analytics and machine learning. Data mining and machine learning are considered interdisciplinary fields. Data mining is a subset of data analytics and machine learning involves the use of algorithms that automatically improve through experience based on data. Massive datasets can be classified and clustered to obtain accurate results. The most common technologies used include classification and clustering methods. Accuracy and error rates are calculated for regression and classification and clustering to find actual results through algorithms like support vector machines and neural networks with forward and backward propagation. Applications include fraud detection, image processing, medical diagnosis, weather prediction, e-commerce and so forth. The book features: A review of the state-of-the-art in data mining and machine learning, A review and description of the learning methods in human-computer interaction, Implementation strategies and future research directions used to meet the design and application requirements of several modern and real-time applications for a long time, The scope and implementation of a majority of data mining and machine learning strategies. A discussion of real-time problems. Audience Industry and academic researchers, scientists, and engineers in information technology, data science and machine and deep learning, as well as artificial intelligence more broadly.