Machine Learning And Deep Learning In Efficacy Improvement Of Healthcare Systems
Download Machine Learning And Deep Learning In Efficacy Improvement Of Healthcare Systems full books in PDF, epub, and Kindle. Read online free Machine Learning And Deep Learning In Efficacy Improvement Of Healthcare Systems ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Om Prakash Jena |
Publisher |
: CRC Press |
Total Pages |
: 0 |
Release |
: 2021-12 |
ISBN-10 |
: 1032037954 |
ISBN-13 |
: 9781032037950 |
Rating |
: 4/5 (54 Downloads) |
Synopsis Machine Learning and Deep Learning in Efficacy Improvement of Healthcare Systems by : Om Prakash Jena
"This book describes the fundamental concepts of machine learning and deep learning techniques in a healthcare system. The aim of this book is to describe how deep learning methods are used to insure high quality data processing, medical image and signal analysis, and improved healthcare application"--
Author |
: Om Prakash Jena |
Publisher |
: CRC Press |
Total Pages |
: 397 |
Release |
: 2022-05-18 |
ISBN-10 |
: 9781000486797 |
ISBN-13 |
: 1000486796 |
Rating |
: 4/5 (97 Downloads) |
Synopsis Machine Learning and Deep Learning in Efficacy Improvement of Healthcare Systems by : Om Prakash Jena
The goal of medical informatics is to improve life expectancy, disease diagnosis and quality of life. Medical devices have revolutionized healthcare and have led to the modern age of machine learning, deep learning and Internet of Medical Things (IoMT) with their proliferation, mobility and agility. This book exposes different dimensions of applications for computational intelligence and explains its use in solving various biomedical and healthcare problems in the real world. This book describes the fundamental concepts of machine learning and deep learning techniques in a healthcare system. The aim of this book is to describe how deep learning methods are used to ensure high-quality data processing, medical image and signal analysis and improved healthcare applications. This book also explores different dimensions of computational intelligence applications and illustrates its use in the solution of assorted real-world biomedical and healthcare problems. Furthermore, it provides the healthcare sector with innovative advances in theory, analytical approaches, numerical simulation, statistical analysis, modelling, advanced deployment, case studies, analytical results, computational structuring and significant progress in the field of machine learning and deep learning in healthcare applications. FEATURES Explores different dimensions of computational intelligence applications and illustrates its use in the solution of assorted real-world biomedical and healthcare problems Provides guidance in developing intelligence-based diagnostic systems, efficient models and cost-effective machines Provides the latest research findings, solutions to the concerning issues and relevant theoretical frameworks in the area of machine learning and deep learning for healthcare systems Describes experiences and findings relating to protocol design, prototyping, experimental evaluation, real testbeds and empirical characterization of security and privacy interoperability issues in healthcare applications Explores and illustrates the current and future impacts of pandemics and mitigates risk in healthcare with advanced analytics This book is intended for students, researchers, professionals and policy makers working in the fields of public health and in the healthcare sector. Scientists and IT specialists will also find this book beneficial for research exposure and new ideas in the field of machine learning and deep learning.
Author |
: Adam Bohr |
Publisher |
: Academic Press |
Total Pages |
: 385 |
Release |
: 2020-06-21 |
ISBN-10 |
: 9780128184394 |
ISBN-13 |
: 0128184396 |
Rating |
: 4/5 (94 Downloads) |
Synopsis Artificial Intelligence in Healthcare by : Adam Bohr
Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data
Author |
: Arjun Panesar |
Publisher |
: Apress |
Total Pages |
: 390 |
Release |
: 2019-02-04 |
ISBN-10 |
: 9781484237991 |
ISBN-13 |
: 1484237994 |
Rating |
: 4/5 (91 Downloads) |
Synopsis Machine Learning and AI for Healthcare by : Arjun Panesar
Explore the theory and practical applications of artificial intelligence (AI) and machine learning in healthcare. This book offers a guided tour of machine learning algorithms, architecture design, and applications of learning in healthcare and big data challenges. You’ll discover the ethical implications of healthcare data analytics and the future of AI in population and patient health optimization. You’ll also create a machine learning model, evaluate performance and operationalize its outcomes within your organization. Machine Learning and AI for Healthcare provides techniques on how to apply machine learning within your organization and evaluate the efficacy, suitability, and efficiency of AI applications. These are illustrated through leading case studies, including how chronic disease is being redefined through patient-led data learning and the Internet of Things. What You'll LearnGain a deeper understanding of key machine learning algorithms and their use and implementation within wider healthcare Implement machine learning systems, such as speech recognition and enhanced deep learning/AI Select learning methods/algorithms and tuning for use in healthcare Recognize and prepare for the future of artificial intelligence in healthcare through best practices, feedback loops and intelligent agentsWho This Book Is For Health care professionals interested in how machine learning can be used to develop health intelligence – with the aim of improving patient health, population health and facilitating significant care-payer cost savings.
Author |
: Gobert Lee |
Publisher |
: Springer Nature |
Total Pages |
: 184 |
Release |
: 2020-02-06 |
ISBN-10 |
: 9783030331283 |
ISBN-13 |
: 3030331288 |
Rating |
: 4/5 (83 Downloads) |
Synopsis Deep Learning in Medical Image Analysis by : Gobert Lee
This book presents cutting-edge research and applications of deep learning in a broad range of medical imaging scenarios, such as computer-aided diagnosis, image segmentation, tissue recognition and classification, and other areas of medical and healthcare problems. Each of its chapters covers a topic in depth, ranging from medical image synthesis and techniques for muskuloskeletal analysis to diagnostic tools for breast lesions on digital mammograms and glaucoma on retinal fundus images. It also provides an overview of deep learning in medical image analysis and highlights issues and challenges encountered by researchers and clinicians, surveying and discussing practical approaches in general and in the context of specific problems. Academics, clinical and industry researchers, as well as young researchers and graduate students in medical imaging, computer-aided-diagnosis, biomedical engineering and computer vision will find this book a great reference and very useful learning resource.
Author |
: Alex Khang |
Publisher |
: CRC Press |
Total Pages |
: 422 |
Release |
: 2024-05-15 |
ISBN-10 |
: 9781040021798 |
ISBN-13 |
: 1040021794 |
Rating |
: 4/5 (98 Downloads) |
Synopsis AI and IoT Technology and Applications for Smart Healthcare Systems by : Alex Khang
In recent years, the application of Artificial Intelligence (AI) and Internet of Things (IoT) technologies in smart healthcare has been increasing. We are approaching a world where connected smart devices tell people when they need to visit a doctor because these devices will be able to detect health problems and discover symptoms of illness that may need medical care. AI-collaborative IoT technologies can help medical professionals with decision-making. These technologies can also help develop a sustainable and smart healthcare system. AI and IoT Technology and Applications for Smart Healthcare Systems helps readers understand complex scientific topics in a simple and accessible way. It introduces the world of AI-collaborative IoT physics, explaining how this technology behaves at the smallest level and how this can revolutionize healthcare. The book shows how IoT technology and AI can work together to make computers more powerful and capable of solving complex problems in the healthcare sector. Exploring the effect of AI-collaborative technology on IoT technologies, the book discusses how IoT can benefit from AI algorithms to enable machines to learn, make decisions, and process information more efficiently. Because smart machines create more perceptive devices and systems, the application of this technology raises important ethical questions about privacy, security, and the responsible development of healthcare IoT technology, which this book covers. The book also provides insight into the potential applications of these technologies not only in the healthcare industry but also in related fields, such as smart transportation, smart manufacturing, and smart cities.
Author |
: Kisku, Dakshina Ranjan |
Publisher |
: IGI Global |
Total Pages |
: 315 |
Release |
: 2019-01-11 |
ISBN-10 |
: 9781522575269 |
ISBN-13 |
: 152257526X |
Rating |
: 4/5 (69 Downloads) |
Synopsis Design and Implementation of Healthcare Biometric Systems by : Kisku, Dakshina Ranjan
Healthcare sectors often deal with a large amount of data related to patients’ care and hospital workforce management. Mistakes occur, and the impending results are disastrous for individuals’ personal identity information. However, an innovative and reliable way to safeguard the identity of individuals and provide protection of medical records from criminals is already in effect. Design and Implementation of Healthcare Biometric Systems provides innovative insights into medical identity theft and the benefits behind biometrics technologies that could be offered to protect medical records from hackers and malicious users. The content within this publication represents the work of ASD screening systems, healthcare management, and patient rehabilitation. It is designed for educators, researchers, faculty members, industry practitioners, graduate students, and professionals working with healthcare services and covers topics centered on understanding the practical essence of next-generation healthcare biometrics systems and future research directions.
Author |
: Kerrie L. Holley |
Publisher |
: "O'Reilly Media, Inc." |
Total Pages |
: 222 |
Release |
: 2021-04-19 |
ISBN-10 |
: 9781492063100 |
ISBN-13 |
: 149206310X |
Rating |
: 4/5 (00 Downloads) |
Synopsis AI-First Healthcare by : Kerrie L. Holley
AI is poised to transform every aspect of healthcare, including the way we manage personal health, from customer experience and clinical care to healthcare cost reductions. This practical book is one of the first to describe present and future use cases where AI can help solve pernicious healthcare problems. Kerrie Holley and Siupo Becker provide guidance to help informatics and healthcare leadership create AI strategy and implementation plans for healthcare. With this book, business stakeholders and practitioners will be able to build knowledge, a roadmap, and the confidence to support AIin their organizations—without getting into the weeds of algorithms or open source frameworks. Cowritten by an AI technologist and a medical doctor who leverages AI to solve healthcare’s most difficult challenges, this book covers: The myths and realities of AI, now and in the future Human-centered AI: what it is and how to make it possible Using various AI technologies to go beyond precision medicine How to deliver patient care using the IoT and ambient computing with AI How AI can help reduce waste in healthcare AI strategy and how to identify high-priority AI application
Author |
: Vishal Jain |
Publisher |
: Springer Nature |
Total Pages |
: 418 |
Release |
: 2020-03-09 |
ISBN-10 |
: 9783030408503 |
ISBN-13 |
: 3030408507 |
Rating |
: 4/5 (03 Downloads) |
Synopsis Machine Learning with Health Care Perspective by : Vishal Jain
This unique book introduces a variety of techniques designed to represent, enhance and empower multi-disciplinary and multi-institutional machine learning research in healthcare informatics. Providing a unique compendium of current and emerging machine learning paradigms for healthcare informatics, it reflects the diversity, complexity, and the depth and breadth of this multi-disciplinary area. Further, it describes techniques for applying machine learning within organizations and explains how to evaluate the efficacy, suitability, and efficiency of such applications. Featuring illustrative case studies, including how chronic disease is being redefined through patient-led data learning, the book offers a guided tour of machine learning algorithms, architecture design, and applications of learning in healthcare challenges.
Author |
: Dr. Anand Ashok Khatri |
Publisher |
: Xoffencerpublication |
Total Pages |
: 235 |
Release |
: 2023-06-09 |
ISBN-10 |
: 9789394707993 |
ISBN-13 |
: 9394707999 |
Rating |
: 4/5 (93 Downloads) |
Synopsis MACHINE LEARNING IN HEALTHCARE by : Dr. Anand Ashok Khatri
The study of how data pertaining to healthcare may be gathered, transferred, processed, stored, and retrieved is what is known as the field of healthcare informatics. Early illness prevention, early disease detection, early disease diagnosis, and early disease therapy are all essential components of this field of research. Within the realm of healthcare informatics, the only types of data that are considered reliable are those that pertain to illnesses, patient histories, and the computing procedures that are required to interpret this data. Conventional medical practices throughout the United States have made significant investments in state-of-the-art technological and computational infrastructure over the course of the last two decades in order to improve their ability to support academics, medical professionals, and patients. Significant resources have been invested in order to raise the quality of medical treatment that can be provided by using these approaches. The aim to offer patients with healthcare that is not only reasonably priced and of good quality, but also completely free of any and all anxiety served as the impetus for these many projects. As a direct result of these efforts, the advantages and significance of utilizing computational tools to help with referrals and prescriptions, to set up and manage electronic health records (EHR), and to make technological advancements in digital medical imaging have become more obvious. These tools can also assist with setting up and managing electronic health records (EHR). It has been shown that computerized physician order entry, commonly known as CPOE, may improve the quality of care that is provided to patients while simultaneously lowering the number of prescription mistakes and adverse drug reactions. When a doctor uses CPOE, they are able to swiftly get pertinent patient data without having to leave the screen where they are entering prescriptions. The history of the patient provides the treating physician with advance notice of any possibly dangerous responses. Moreover, the CPOE offers the physician the ability to monitor the order's development as it moves through the system.