Machine Learning And Data Analytics For Solving Business Problems
Download Machine Learning And Data Analytics For Solving Business Problems full books in PDF, epub, and Kindle. Read online free Machine Learning And Data Analytics For Solving Business Problems ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Bader Alyoubi |
Publisher |
: Springer Nature |
Total Pages |
: 214 |
Release |
: 2022-12-15 |
ISBN-10 |
: 9783031184833 |
ISBN-13 |
: 3031184831 |
Rating |
: 4/5 (33 Downloads) |
Synopsis Machine Learning and Data Analytics for Solving Business Problems by : Bader Alyoubi
This book presents advances in business computing and data analytics by discussing recent and innovative machine learning methods that have been designed to support decision-making processes. These methods form the theoretical foundations of intelligent management systems, which allows for companies to understand the market environment, to improve the analysis of customer needs, to propose creative personalization of contents, and to design more effective business strategies, products, and services. This book gives an overview of recent methods – such as blockchain, big data, artificial intelligence, and cloud computing – so readers can rapidly explore them and their applications to solve common business challenges. The book aims to empower readers to leverage and develop creative supervised and unsupervised methods to solve business decision-making problems.
Author |
: John D. Kelleher |
Publisher |
: MIT Press |
Total Pages |
: 853 |
Release |
: 2020-10-20 |
ISBN-10 |
: 9780262361101 |
ISBN-13 |
: 0262361108 |
Rating |
: 4/5 (01 Downloads) |
Synopsis Fundamentals of Machine Learning for Predictive Data Analytics, second edition by : John D. Kelleher
The second edition of a comprehensive introduction to machine learning approaches used in predictive data analytics, covering both theory and practice. Machine learning is often used to build predictive models by extracting patterns from large datasets. These models are used in predictive data analytics applications including price prediction, risk assessment, predicting customer behavior, and document classification. This introductory textbook offers a detailed and focused treatment of the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications. Technical and mathematical material is augmented with explanatory worked examples, and case studies illustrate the application of these models in the broader business context. This second edition covers recent developments in machine learning, especially in a new chapter on deep learning, and two new chapters that go beyond predictive analytics to cover unsupervised learning and reinforcement learning.
Author |
: Walter R. Paczkowski |
Publisher |
: Springer Nature |
Total Pages |
: 416 |
Release |
: 2022-01-03 |
ISBN-10 |
: 9783030870232 |
ISBN-13 |
: 3030870235 |
Rating |
: 4/5 (32 Downloads) |
Synopsis Business Analytics by : Walter R. Paczkowski
This book focuses on three core knowledge requirements for effective and thorough data analysis for solving business problems. These are a foundational understanding of: 1. statistical, econometric, and machine learning techniques; 2. data handling capabilities; 3. at least one programming language. Practical in orientation, the volume offers illustrative case studies throughout and examples using Python in the context of Jupyter notebooks. Covered topics include demand measurement and forecasting, predictive modeling, pricing analytics, customer satisfaction assessment, market and advertising research, and new product development and research. This volume will be useful to business data analysts, data scientists, and market research professionals, as well as aspiring practitioners in business data analytics. It can also be used in colleges and universities offering courses and certifications in business data analytics, data science, and market research.
Author |
: Subhendu Kumar Pani |
Publisher |
: CRC Press |
Total Pages |
: 346 |
Release |
: 2022-09-01 |
ISBN-10 |
: 9781000793550 |
ISBN-13 |
: 1000793559 |
Rating |
: 4/5 (50 Downloads) |
Synopsis Applications of Machine Learning in Big-Data Analytics and Cloud Computing by : Subhendu Kumar Pani
Cloud Computing and Big Data technologies have become the new descriptors of the digital age. The global amount of digital data has increased more than nine times in volume in just five years and by 2030 its volume may reach a staggering 65 trillion gigabytes. This explosion of data has led to opportunities and transformation in various areas such as healthcare, enterprises, industrial manufacturing and transportation. New Cloud Computing and Big Data tools endow researchers and analysts with novel techniques and opportunities to collect, manage and analyze the vast quantities of data. In Cloud and Big Data Analytics, the two areas of Swarm Intelligence and Deep Learning are a developing type of Machine Learning techniques that show enormous potential for solving complex business problems. Deep Learning enables computers to analyze large quantities of unstructured and binary data and to deduce relationships without requiring specific models or programming instructions. This book introduces the state-of-the-art trends and advances in the use of Machine Learning in Cloud and Big Data Analytics. The book will serve as a reference for Data Scientists, systems architects, developers, new researchers and graduate level students in Computer and Data science. The book will describe the concepts necessary to understand current Machine Learning issues, challenges and possible solutions as well as upcoming trends in Big Data Analytics.
Author |
: Scott E. Page |
Publisher |
: Basic Books |
Total Pages |
: 585 |
Release |
: 2018-11-27 |
ISBN-10 |
: 9780465094639 |
ISBN-13 |
: 0465094635 |
Rating |
: 4/5 (39 Downloads) |
Synopsis The Model Thinker by : Scott E. Page
Work with data like a pro using this guide that breaks down how to organize, apply, and most importantly, understand what you are analyzing in order to become a true data ninja. From the stock market to genomics laboratories, census figures to marketing email blasts, we are awash with data. But as anyone who has ever opened up a spreadsheet packed with seemingly infinite lines of data knows, numbers aren't enough: we need to know how to make those numbers talk. In The Model Thinker, social scientist Scott E. Page shows us the mathematical, statistical, and computational models—from linear regression to random walks and far beyond—that can turn anyone into a genius. At the core of the book is Page's "many-model paradigm," which shows the reader how to apply multiple models to organize the data, leading to wiser choices, more accurate predictions, and more robust designs. The Model Thinker provides a toolkit for business people, students, scientists, pollsters, and bloggers to make them better, clearer thinkers, able to leverage data and information to their advantage.
Author |
: Matt Taddy |
Publisher |
: McGraw Hill Professional |
Total Pages |
: 350 |
Release |
: 2019-08-23 |
ISBN-10 |
: 9781260452785 |
ISBN-13 |
: 1260452786 |
Rating |
: 4/5 (85 Downloads) |
Synopsis Business Data Science: Combining Machine Learning and Economics to Optimize, Automate, and Accelerate Business Decisions by : Matt Taddy
Use machine learning to understand your customers, frame decisions, and drive value The business analytics world has changed, and Data Scientists are taking over. Business Data Science takes you through the steps of using machine learning to implement best-in-class business data science. Whether you are a business leader with a desire to go deep on data, or an engineer who wants to learn how to apply Machine Learning to business problems, you’ll find the information, insight, and tools you need to flourish in today’s data-driven economy. You’ll learn how to: Use the key building blocks of Machine Learning: sparse regularization, out-of-sample validation, and latent factor and topic modeling Understand how use ML tools in real world business problems, where causation matters more that correlation Solve data science programs by scripting in the R programming language Today’s business landscape is driven by data and constantly shifting. Companies live and die on their ability to make and implement the right decisions quickly and effectively. Business Data Science is about doing data science right. It’s about the exciting things being done around Big Data to run a flourishing business. It’s about the precepts, principals, and best practices that you need know for best-in-class business data science.
Author |
: Bernard Marr |
Publisher |
: John Wiley & Sons |
Total Pages |
: 220 |
Release |
: 2019-04-15 |
ISBN-10 |
: 9781119548980 |
ISBN-13 |
: 1119548985 |
Rating |
: 4/5 (80 Downloads) |
Synopsis Artificial Intelligence in Practice by : Bernard Marr
Cyber-solutions to real-world business problems Artificial Intelligence in Practice is a fascinating look into how companies use AI and machine learning to solve problems. Presenting 50 case studies of actual situations, this book demonstrates practical applications to issues faced by businesses around the globe. The rapidly evolving field of artificial intelligence has expanded beyond research labs and computer science departments and made its way into the mainstream business environment. Artificial intelligence and machine learning are cited as the most important modern business trends to drive success. It is used in areas ranging from banking and finance to social media and marketing. This technology continues to provide innovative solutions to businesses of all sizes, sectors and industries. This engaging and topical book explores a wide range of cases illustrating how businesses use AI to boost performance, drive efficiency, analyse market preferences and many others. Best-selling author and renowned AI expert Bernard Marr reveals how machine learning technology is transforming the way companies conduct business. This detailed examination provides an overview of each company, describes the specific problem and explains how AI facilitates resolution. Each case study provides a comprehensive overview, including some technical details as well as key learning summaries: Understand how specific business problems are addressed by innovative machine learning methods Explore how current artificial intelligence applications improve performance and increase efficiency in various situations Expand your knowledge of recent AI advancements in technology Gain insight on the future of AI and its increasing role in business and industry Artificial Intelligence in Practice: How 50 Successful Companies Used Artificial Intelligence to Solve Problems is an insightful and informative exploration of the transformative power of technology in 21st century commerce.
Author |
: Harvard Business Review |
Publisher |
: HBR Insights |
Total Pages |
: 160 |
Release |
: 2019 |
ISBN-10 |
: 1633697894 |
ISBN-13 |
: 9781633697898 |
Rating |
: 4/5 (94 Downloads) |
Synopsis Artificial Intelligence by : Harvard Business Review
Companies that don't use AI to their advantage will soon be left behind. Artificial intelligence and machine learning will drive a massive reshaping of the economy and society. What should you and your company be doing right now to ensure that your business is poised for success? These articles by AI experts and consultants will help you understand today's essential thinking on what AI is capable of now, how to adopt it in your organization, and how the technology is likely to evolve in the near future. Artificial Intelligence: The Insights You Need from Harvard Business Review will help you spearhead important conversations, get going on the right AI initiatives for your company, and capitalize on the opportunity of the machine intelligence revolution. Catch up on current topics and deepen your understanding of them with the Insights You Need series from Harvard Business Review. Featuring some of HBR's best and most recent thinking, Insights You Need titles are both a primer on today's most pressing issues and an extension of the conversation, with interesting research, interviews, case studies, and practical ideas to help you explore how a particular issue will impact your company and what it will mean for you and your business.
Author |
: Abdulhamit Subasi |
Publisher |
: Academic Press |
Total Pages |
: 536 |
Release |
: 2020-06-05 |
ISBN-10 |
: 9780128213803 |
ISBN-13 |
: 0128213809 |
Rating |
: 4/5 (03 Downloads) |
Synopsis Practical Machine Learning for Data Analysis Using Python by : Abdulhamit Subasi
Practical Machine Learning for Data Analysis Using Python is a problem solver's guide for creating real-world intelligent systems. It provides a comprehensive approach with concepts, practices, hands-on examples, and sample code. The book teaches readers the vital skills required to understand and solve different problems with machine learning. It teaches machine learning techniques necessary to become a successful practitioner, through the presentation of real-world case studies in Python machine learning ecosystems. The book also focuses on building a foundation of machine learning knowledge to solve different real-world case studies across various fields, including biomedical signal analysis, healthcare, security, economics, and finance. Moreover, it covers a wide range of machine learning models, including regression, classification, and forecasting. The goal of the book is to help a broad range of readers, including IT professionals, analysts, developers, data scientists, engineers, and graduate students, to solve their own real-world problems. - Offers a comprehensive overview of the application of machine learning tools in data analysis across a wide range of subject areas - Teaches readers how to apply machine learning techniques to biomedical signals, financial data, and healthcare data - Explores important classification and regression algorithms as well as other machine learning techniques - Explains how to use Python to handle data extraction, manipulation, and exploration techniques, as well as how to visualize data spread across multiple dimensions and extract useful features
Author |
: Fred Nwanganga |
Publisher |
: John Wiley & Sons |
Total Pages |
: 464 |
Release |
: 2020-05-27 |
ISBN-10 |
: 9781119591511 |
ISBN-13 |
: 1119591511 |
Rating |
: 4/5 (11 Downloads) |
Synopsis Practical Machine Learning in R by : Fred Nwanganga
Guides professionals and students through the rapidly growing field of machine learning with hands-on examples in the popular R programming language Machine learning—a branch of Artificial Intelligence (AI) which enables computers to improve their results and learn new approaches without explicit instructions—allows organizations to reveal patterns in their data and incorporate predictive analytics into their decision-making process. Practical Machine Learning in R provides a hands-on approach to solving business problems with intelligent, self-learning computer algorithms. Bestselling author and data analytics experts Fred Nwanganga and Mike Chapple explain what machine learning is, demonstrate its organizational benefits, and provide hands-on examples created in the R programming language. A perfect guide for professional self-taught learners or students in an introductory machine learning course, this reader-friendly book illustrates the numerous real-world business uses of machine learning approaches. Clear and detailed chapters cover data wrangling, R programming with the popular RStudio tool, classification and regression techniques, performance evaluation, and more. Explores data management techniques, including data collection, exploration and dimensionality reduction Covers unsupervised learning, where readers identify and summarize patterns using approaches such as apriori, eclat and clustering Describes the principles behind the Nearest Neighbor, Decision Tree and Naive Bayes classification techniques Explains how to evaluate and choose the right model, as well as how to improve model performance using ensemble methods such as Random Forest and XGBoost Practical Machine Learning in R is a must-have guide for business analysts, data scientists, and other professionals interested in leveraging the power of AI to solve business problems, as well as students and independent learners seeking to enter the field.