Lyapunov Exponents of Linear Cocycles

Lyapunov Exponents of Linear Cocycles
Author :
Publisher : Springer
Total Pages : 271
Release :
ISBN-10 : 9789462391246
ISBN-13 : 9462391246
Rating : 4/5 (46 Downloads)

Synopsis Lyapunov Exponents of Linear Cocycles by : Pedro Duarte

The aim of this monograph is to present a general method of proving continuity of Lyapunov exponents of linear cocycles. The method uses an inductive procedure based on a general, geometric version of the Avalanche Principle. The main assumption required by this method is the availability of appropriate large deviation type estimates for quantities related to the iterates of the base and fiber dynamics associated with the linear cocycle. We establish such estimates for various models of random and quasi-periodic cocycles. Our method has its origins in a paper of M. Goldstein and W. Schlag. Our present work expands upon their approach in both depth and breadth. We conclude this monograph with a list of related open problems, some of which may be treated using a similar approach.

Lectures on Lyapunov Exponents

Lectures on Lyapunov Exponents
Author :
Publisher : Cambridge University Press
Total Pages : 217
Release :
ISBN-10 : 9781316062692
ISBN-13 : 1316062694
Rating : 4/5 (92 Downloads)

Synopsis Lectures on Lyapunov Exponents by : Marcelo Viana

The theory of Lyapunov exponents originated over a century ago in the study of the stability of solutions of differential equations. Written by one of the subject's leading authorities, this book is both an account of the classical theory, from a modern view, and an introduction to the significant developments relating the subject to dynamical systems, ergodic theory, mathematical physics and probability. It is based on the author's own graduate course and is reasonably self-contained with an extensive set of exercises provided at the end of each chapter. This book makes a welcome addition to the literature, serving as a graduate text and a valuable reference for researchers in the field.

Proceedings Of The International Congress Of Mathematicians 2018 (Icm 2018) (In 4 Volumes)

Proceedings Of The International Congress Of Mathematicians 2018 (Icm 2018) (In 4 Volumes)
Author :
Publisher : World Scientific
Total Pages : 5393
Release :
ISBN-10 : 9789813272897
ISBN-13 : 9813272899
Rating : 4/5 (97 Downloads)

Synopsis Proceedings Of The International Congress Of Mathematicians 2018 (Icm 2018) (In 4 Volumes) by : Boyan Sirakov

The Proceedings of the ICM publishes the talks, by invited speakers, at the conference organized by the International Mathematical Union every 4 years. It covers several areas of Mathematics and it includes the Fields Medal and Nevanlinna, Gauss and Leelavati Prizes and the Chern Medal laudatios.

Lectures on Lyapunov Exponents

Lectures on Lyapunov Exponents
Author :
Publisher : Cambridge University Press
Total Pages : 217
Release :
ISBN-10 : 9781107081734
ISBN-13 : 1107081734
Rating : 4/5 (34 Downloads)

Synopsis Lectures on Lyapunov Exponents by : Marcelo Viana

Covers the fundamental aspects of the classical theory and introduces significant recent developments. Based on the author's graduate course.

Nonuniform Hyperbolicity

Nonuniform Hyperbolicity
Author :
Publisher :
Total Pages :
Release :
ISBN-10 : 1299707300
ISBN-13 : 9781299707306
Rating : 4/5 (00 Downloads)

Synopsis Nonuniform Hyperbolicity by : Luis Barreira

A self-contained, comprehensive account of modern smooth ergodic theory, the mathematical foundation of deterministic chaos.

Lectures on Ergodic Theory and Pesin Theory on Compact Manifolds

Lectures on Ergodic Theory and Pesin Theory on Compact Manifolds
Author :
Publisher : Cambridge University Press
Total Pages : 176
Release :
ISBN-10 : 0521435935
ISBN-13 : 9780521435932
Rating : 4/5 (35 Downloads)

Synopsis Lectures on Ergodic Theory and Pesin Theory on Compact Manifolds by : Mark Pollicott

These lecture notes provide a unique introduction to Pesin theory and its applications.

New Trends in Lyapunov Exponents

New Trends in Lyapunov Exponents
Author :
Publisher : Springer Nature
Total Pages : 184
Release :
ISBN-10 : 9783031413162
ISBN-13 : 3031413164
Rating : 4/5 (62 Downloads)

Synopsis New Trends in Lyapunov Exponents by : João Lopes Dias

This volume presents peer-reviewed surveys on new developments in the study of Lyapunov exponents in dynamical systems and its applications to other areas, such as mathematical physics. Written by leading experts in their fields, the contributions are based upon the presentations given by invited speakers at the “New Trends in Lyapunov Exponents” workshop held in Lisbon, Portugal, February 7–11, 2022. The works focus on the concept of Lyapunov exponents in their various manifestations in dynamical systems along with their applications to mathematical physics and other areas of mathematics. The papers reflect the spirit of the conference of promoting new connections among different subjects in dynamical systems. This volume aims primarily at researchers and graduate students working in dynamical systems and related fields, serving as an introduction to active fields of research and as a review of recent results as well.

Green's Function Estimates for Lattice Schrodinger Operators and Applications. (AM-158)

Green's Function Estimates for Lattice Schrodinger Operators and Applications. (AM-158)
Author :
Publisher : Princeton University Press
Total Pages : 183
Release :
ISBN-10 : 9780691120980
ISBN-13 : 0691120986
Rating : 4/5 (80 Downloads)

Synopsis Green's Function Estimates for Lattice Schrodinger Operators and Applications. (AM-158) by : Jean Bourgain

This book presents an overview of recent developments in the area of localization for quasi-periodic lattice Schrödinger operators and the theory of quasi-periodicity in Hamiltonian evolution equations. The physical motivation of these models extends back to the works of Rudolph Peierls and Douglas R. Hofstadter, and the models themselves have been a focus of mathematical research for two decades. Jean Bourgain here sets forth the results and techniques that have been discovered in the last few years. He puts special emphasis on so-called "non-perturbative" methods and the important role of subharmonic function theory and semi-algebraic set methods. He describes various applications to the theory of differential equations and dynamical systems, in particular to the quantum kicked rotor and KAM theory for nonlinear Hamiltonian evolution equations. Intended primarily for graduate students and researchers in the general area of dynamical systems and mathematical physics, the book provides a coherent account of a large body of work that is presently scattered in the literature. It does so in a refreshingly contained manner that seeks to convey the present technological "state of the art."

Topological Dynamics of Random Dynamical Systems

Topological Dynamics of Random Dynamical Systems
Author :
Publisher : Oxford University Press
Total Pages : 216
Release :
ISBN-10 : 0198501579
ISBN-13 : 9780198501572
Rating : 4/5 (79 Downloads)

Synopsis Topological Dynamics of Random Dynamical Systems by : Nguyen Dinh Cong

This book is the first systematic treatment of the theory of topological dynamics of random dynamical systems. A relatively new field, the theory of random dynamical systems unites and develops the classical deterministic theory of dynamical systems and probability theory, finding numerous applications in disciplines ranging from physics and biology to engineering, finance and economics. This book presents in detail the solutions to the most fundamental problems of topological dynamics: linearization of nonlinear smooth systems, classification, and structural stability of linear hyperbolic systems. Employing the tools and methods of algebraic ergodic theory, the theory presented in the book has surprisingly beautiful results showing the richness of random dynamical systems as well as giving a gentle generalization of the classical deterministic theory.

Random Dynamical Systems

Random Dynamical Systems
Author :
Publisher : Springer Science & Business Media
Total Pages : 590
Release :
ISBN-10 : 9783662128787
ISBN-13 : 3662128780
Rating : 4/5 (87 Downloads)

Synopsis Random Dynamical Systems by : Ludwig Arnold

The first systematic presentation of the theory of dynamical systems under the influence of randomness, this book includes products of random mappings as well as random and stochastic differential equations. The basic multiplicative ergodic theorem is presented, providing a random substitute for linear algebra. On its basis, many applications are detailed. Numerous instructive examples are treated analytically or numerically.