Applied Logistic Regression

Applied Logistic Regression
Author :
Publisher : John Wiley & Sons
Total Pages : 397
Release :
ISBN-10 : 9780471654025
ISBN-13 : 0471654027
Rating : 4/5 (25 Downloads)

Synopsis Applied Logistic Regression by : David W. Hosmer, Jr.

From the reviews of the First Edition. "An interesting, useful, and well-written book on logistic regression models . . . Hosmer and Lemeshow have used very little mathematics, have presented difficult concepts heuristically and through illustrative examples, and have included references." —Choice "Well written, clearly organized, and comprehensive . . . the authors carefully walk the reader through the estimation of interpretation of coefficients from a wide variety of logistic regression models . . . their careful explication of the quantitative re-expression of coefficients from these various models is excellent." —Contemporary Sociology "An extremely well-written book that will certainly prove an invaluable acquisition to the practicing statistician who finds other literature on analysis of discrete data hard to follow or heavily theoretical." —The Statistician In this revised and updated edition of their popular book, David Hosmer and Stanley Lemeshow continue to provide an amazingly accessible introduction to the logistic regression model while incorporating advances of the last decade, including a variety of software packages for the analysis of data sets. Hosmer and Lemeshow extend the discussion from biostatistics and epidemiology to cutting-edge applications in data mining and machine learning, guiding readers step-by-step through the use of modeling techniques for dichotomous data in diverse fields. Ample new topics and expanded discussions of existing material are accompanied by a wealth of real-world examples-with extensive data sets available over the Internet.

Logistic Regression

Logistic Regression
Author :
Publisher : Springer Science & Business Media
Total Pages : 291
Release :
ISBN-10 : 9781475741087
ISBN-13 : 1475741081
Rating : 4/5 (87 Downloads)

Synopsis Logistic Regression by : David G. Kleinbaum

This text on logistic regression methods contains the following eight chapters: 1 Introduction to Logistic Regression 2 Important Special Cases of the Logistic Model 3 Computing the Odds Ratio in Logistic Regression 4 Maximum Likelihood Techniques: An Overview 5 Statistical Inferences Using Maximum Likelihood Techniques 6 Modeling Strategy Guidelines 7 Modeling Strategy for Assessing Interaction and Confounding 8 Analysis of Matched Data Using Logistic Regression Each chapter contains a presentation of its topic in "lecture-book" format together with objectives, an outline, key formulae, practice exercises, and a test. The "lecture-book" has a sequence of illustrations and formulae in the left column of each page and a script in the right column. This format allows you to read the script in conjunction with the illustrations and formulae that high light the main points, formulae, or examples being presented. The reader mayaiso purchase directly from the author audio-cassette tapes of each chapter. If you purchase the tapes, you may use the tape with the illustrations and formulae, ignoring the script. The use of the audiotape with the illustrations and formulae is intended to be similar to a lecture. An audio cassette player is the only equipment required. Tapes may be obtained by writing or calling the author at the following address: Depart ment of Epidemiology, School of Public Health, Emory University, 1599 Clifton Rd. N. E. , Atlanta, GA 30333, phone (404) 727-9667. This text is intended for self-study.

Practical Guide to Logistic Regression

Practical Guide to Logistic Regression
Author :
Publisher : CRC Press
Total Pages : 170
Release :
ISBN-10 : 9781498709583
ISBN-13 : 1498709583
Rating : 4/5 (83 Downloads)

Synopsis Practical Guide to Logistic Regression by : Joseph M. Hilbe

Practical Guide to Logistic Regression covers the key points of the basic logistic regression model and illustrates how to use it properly to model a binary response variable. This powerful methodology can be used to analyze data from various fields, including medical and health outcomes research, business analytics and data science, ecology, fishe

Logistic Regression

Logistic Regression
Author :
Publisher : SAGE
Total Pages : 393
Release :
ISBN-10 : 9781412974837
ISBN-13 : 1412974836
Rating : 4/5 (37 Downloads)

Synopsis Logistic Regression by : Scott W. Menard

Logistic Regression is designed for readers who have a background in statistics at least up to multiple linear regression, who want to analyze dichotomous, nominal, and ordinal dependent variables cross-sectionally and longitudinally.

Logistic Regression Models

Logistic Regression Models
Author :
Publisher : CRC Press
Total Pages : 658
Release :
ISBN-10 : 9781420075779
ISBN-13 : 1420075772
Rating : 4/5 (79 Downloads)

Synopsis Logistic Regression Models by : Joseph M. Hilbe

Logistic Regression Models presents an overview of the full range of logistic models, including binary, proportional, ordered, partially ordered, and unordered categorical response regression procedures. Other topics discussed include panel, survey, skewed, penalized, and exact logistic models. The text illustrates how to apply the various models t

Logistic Regression

Logistic Regression
Author :
Publisher : SAGE
Total Pages : 98
Release :
ISBN-10 : 0761920102
ISBN-13 : 9780761920106
Rating : 4/5 (02 Downloads)

Synopsis Logistic Regression by : Fred C. Pampel

Trying to determine when to use a logistic regression and how to interpret the coefficients? Frustrated by the technical writing in other books on the topic? Pampel's book offers readers the first "nuts and bolts" approach to doing logist

Interpretable Machine Learning

Interpretable Machine Learning
Author :
Publisher : Lulu.com
Total Pages : 320
Release :
ISBN-10 : 9780244768522
ISBN-13 : 0244768528
Rating : 4/5 (22 Downloads)

Synopsis Interpretable Machine Learning by : Christoph Molnar

This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.

Best Practices in Logistic Regression

Best Practices in Logistic Regression
Author :
Publisher : SAGE Publications
Total Pages : 489
Release :
ISBN-10 : 9781483312095
ISBN-13 : 1483312097
Rating : 4/5 (95 Downloads)

Synopsis Best Practices in Logistic Regression by : Jason W. Osborne

Jason W. Osborne’s Best Practices in Logistic Regression provides students with an accessible, applied approach that communicates logistic regression in clear and concise terms. The book effectively leverages readers’ basic intuitive understanding of simple and multiple regression to guide them into a sophisticated mastery of logistic regression. Osborne’s applied approach offers students and instructors a clear perspective, elucidated through practical and engaging tools that encourage student comprehension.

Applied Logistic Regression Analysis

Applied Logistic Regression Analysis
Author :
Publisher : SAGE
Total Pages : 130
Release :
ISBN-10 : 0761922083
ISBN-13 : 9780761922087
Rating : 4/5 (83 Downloads)

Synopsis Applied Logistic Regression Analysis by : Scott Menard

The focus in this Second Edition is again on logistic regression models for individual level data, but aggregate or grouped data are also considered. The book includes detailed discussions of goodness of fit, indices of predictive efficiency, and standardized logistic regression coefficients, and examples using SAS and SPSS are included. More detailed consideration of grouped as opposed to case-wise data throughout the book Updated discussion of the properties and appropriate use of goodness of fit measures, R-square analogues, and indices of predictive efficiency Discussion of the misuse of odds ratios to represent risk ratios, and of over-dispersion and under-dispersion for grouped data Updated coverage of unordered and ordered polytomous logistic regression models.

Regression Modeling Strategies

Regression Modeling Strategies
Author :
Publisher : Springer Science & Business Media
Total Pages : 583
Release :
ISBN-10 : 9781475734621
ISBN-13 : 147573462X
Rating : 4/5 (21 Downloads)

Synopsis Regression Modeling Strategies by : Frank E. Harrell

Many texts are excellent sources of knowledge about individual statistical tools, but the art of data analysis is about choosing and using multiple tools. Instead of presenting isolated techniques, this text emphasizes problem solving strategies that address the many issues arising when developing multivariable models using real data and not standard textbook examples. It includes imputation methods for dealing with missing data effectively, methods for dealing with nonlinear relationships and for making the estimation of transformations a formal part of the modeling process, methods for dealing with "too many variables to analyze and not enough observations," and powerful model validation techniques based on the bootstrap. This text realistically deals with model uncertainty and its effects on inference to achieve "safe data mining".