Liquid Acquisition Devices for Advanced In-Space Cryogenic Propulsion Systems

Liquid Acquisition Devices for Advanced In-Space Cryogenic Propulsion Systems
Author :
Publisher : Academic Press
Total Pages : 489
Release :
ISBN-10 : 9780128039908
ISBN-13 : 0128039906
Rating : 4/5 (08 Downloads)

Synopsis Liquid Acquisition Devices for Advanced In-Space Cryogenic Propulsion Systems by : Jason William Hartwig

Liquid Acquisition Devices for Advanced In-Space Cryogenic Propulsion Systems discusses the importance of reliable cryogenic systems, a pivotal part of everything from engine propulsion to fuel deposits. As some of the most efficient systems involve advanced cryogenic fluid management systems that present challenging issues, the book tackles issues such as the difficulty in obtaining data, the lack of quality data and models, and the complexity in trying to model these systems. The book presents models and experimental data based on rare and hard-to-obtain cryogenic data. Through clear descriptions of practical data and models, readers will explore the development of robust and flexible liquid acquisition devices (LAD) through component-level and full-scale ground experiments, as well as analytical tools. This book presents new and rare experimental data, as well as analytical models, in a fundamental area to the aerospace and space-flight communities. With this data, the reader can consider new and improved ways to design, analyze, and build expensive flight systems. - Presents a definitive reference for design ideas, analysis tools, and performance data on cryogenic liquid acquisition devices - Provides historical perspectives to present fundamental design models and performance data, which are applied to two practical examples throughout the book - Describes a series of models to optimize liquid acquisition device performance, which are confirmed through a variety of parametric component level tests - Includes video clips of experiments on a companion website

Proceedings of the 28th International Cryogenic Engineering Conference and International Cryogenic Materials Conference 2022

Proceedings of the 28th International Cryogenic Engineering Conference and International Cryogenic Materials Conference 2022
Author :
Publisher : Springer Nature
Total Pages : 1176
Release :
ISBN-10 : 9789819961283
ISBN-13 : 9819961289
Rating : 4/5 (83 Downloads)

Synopsis Proceedings of the 28th International Cryogenic Engineering Conference and International Cryogenic Materials Conference 2022 by : Limin Qiu

This book gathers selected papers from the 28th International Cryogenic Engineering Conference and International Cryogenic Materials Conference 2022 (ICEC28-ICMC 2022), held virtually in Hangzhou, China on 25-29 April 2022, due to COVID-19 pandemic. Highlighting the latest findings on cryogenic engineering and cryogenic materials, it covers topics including: large-scale cryogenic components, processes and systems for refrigeration, separation, and liquefaction of cryogenic fluids, small-scale cryocoolers, cryogenic space applications, thermal insulation, thermal-physical properties of cryogenic fluids and materials, superconducting materials, devices, systems and applications, etc. The book offers valuable information and insights for academic researchers, engineers in the industry, and operators in the cryogenic field.

Experimental and Theoretical Investigations of the Physical Processes Related to the Retention Capability of a Double Screen Element against Liquid Hydrogen in Earth's Gravity and in Microgravity with Respect to the Applied Stimuli

Experimental and Theoretical Investigations of the Physical Processes Related to the Retention Capability of a Double Screen Element against Liquid Hydrogen in Earth's Gravity and in Microgravity with Respect to the Applied Stimuli
Author :
Publisher : Cuvillier Verlag
Total Pages : 400
Release :
ISBN-10 : 9783736966420
ISBN-13 : 3736966423
Rating : 4/5 (20 Downloads)

Synopsis Experimental and Theoretical Investigations of the Physical Processes Related to the Retention Capability of a Double Screen Element against Liquid Hydrogen in Earth's Gravity and in Microgravity with Respect to the Applied Stimuli by : André Pingel

Metal screens are commonly used as components for fluid handling in spacecraft and rocket tank designs. In most cases, the screens perform a passive separation of the propellant phases. The separation of the liquid from the gaseous propellant phase, is a special challenge. Liquid-gas phase separation means that the gaseous phase is allowed to enter a phase separation device while the liquid phase is blocked. The technical application of this process is the depressurization in a propellant tank. A certain amount of the gaseous propellant phase is vented from the tank through the gas port. The liquid propellant phase remains in the tank in order to be stored for the engine. However, if the tank causes a liquid movement during the depressurization, a part of the liquid can potentially enter the gas port. In order to prevent the unwanted liquid outflow, a separation of the liquid from the gas is necessary. This is possible with the aid of a double screen element and has already been performed for storable liquids in Earth’s gravity and microgravity as well as for cryogenic liquids in Earth’s gravity. At the current state of the art, the separation of the liquid from the gaseous phase of the cryogenic propellant hydrogen using a double screen element has not been performed in microgravity. However, with regard to a possible application, it is mandatory to investigate the function of the double screen element for the real propellant under relevant environmental conditions. In this work, a cryogenic test facility has been developed and operated successfully under Earth’s gravity and microgravity conditions using the drop tower at the University of Bremen. Hereby, the original, cryogenic propellant phases: liquid and gaseous hydrogen, have been used. The experiments show the appearance of the physical processes which are related to the retention capability of a double screen element against liquid hydrogen. Furthermore, these physical processes can obviously be influenced by an unknown boundary condition at the screens: the screen saturation. This unknown boundary condition in turn can obviously be influenced by a certain stimulus which causes a special, fluid mechanical process. A simplified mathematical and two numerical models have been developed which combine the observed, physical processes in the experiments. Two fitting parameters are introduced which influence the flow through screen pressure loss of the liquid and the gaseous hydrogen phase. After the fitting to experimental data, the two fitting parameters have been interpreted with respect to a possible screen saturation. The results lead to a prediction of the unknown boundary condition and indicate that a partial saturation of the screens with liquid could be present in each considered experiment. This can possibly lead to a major influence of the overall resistance of the double screen element against liquid hydrogen.

Recent Asian Research on Thermal and Fluid Sciences

Recent Asian Research on Thermal and Fluid Sciences
Author :
Publisher : Springer Nature
Total Pages : 693
Release :
ISBN-10 : 9789811518928
ISBN-13 : 9811518920
Rating : 4/5 (28 Downloads)

Synopsis Recent Asian Research on Thermal and Fluid Sciences by : Abhilash Suryan

This book presents a collection of the best papers from the Seventh Asian Joint Workshop on Thermophysics and Fluid Science (AJWTF7 2018), which was held in Trivandrum, India, in November 2018. The papers highlight research outputs from India, China, Japan, Korea and Bangladesh, and many of them report on collaborative efforts by researchers from these countries. The topics covered include Aero-Acoustics, Aerodynamics, Aerospace Engineering, Bio-Fluidics, Combustion, Flow Measurement, Control and Instrumentation, Fluid Dynamics, Heat and Mass Transfer, Thermodynamics, Mixing and Chemically Reacting Flows, Multiphase Flows, Micro/Nano Flows, Noise/NOx/SOx Reduction, Propulsion, Transonic and Supersonic Flows, and Turbomachinery. The book is one of the first on the topic to gather contributions from some of the leading countries in Asia. Given its scope, it will benefit researchers and students working on research problems in the thermal and fluid sciences.

Technology for Large Space Systems: A Bibliography with Indexes (supplement 20)

Technology for Large Space Systems: A Bibliography with Indexes (supplement 20)
Author :
Publisher :
Total Pages : 192
Release :
ISBN-10 : NASA:31769000660152
ISBN-13 :
Rating : 4/5 (52 Downloads)

Synopsis Technology for Large Space Systems: A Bibliography with Indexes (supplement 20) by : United States. National Aeronautics and Space Administration. Scientific and Technical Information Division