Linking Enterprise Data
Download Linking Enterprise Data full books in PDF, epub, and Kindle. Read online free Linking Enterprise Data ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: David Wood |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 318 |
Release |
: 2010-11-10 |
ISBN-10 |
: 9781441976659 |
ISBN-13 |
: 1441976655 |
Rating |
: 4/5 (59 Downloads) |
Synopsis Linking Enterprise Data by : David Wood
Enterprise data is growing at a much faster rate than traditional technologies allow. New enterprise architectures combining existing technologies are desperately needed. This book suggests a way forward by applying new techniques of the World Wide Web to enterprise information systems. Linking Enterprise Data is an edited volume contributed by worldwide leaders in Semantic Web and Linked Data research, standards development and adoption. Linking enterprise data is the application of World Wide Web architecture principles to real-world information management issues faced by commercial, not-for-profit and government enterprises. This book is divided into four sections: Benefits of applying Linked Data principles in enterprise settings, enterprise approval and support of Linked Data projects, specific Linked Data techniques and a number of real-world success stories from early enterprise adopters. Linking Enterprise Data targets professionals working as CTOs, CIOs, enterprise architects, project managers and application developers in commercial, not-for-profit and government organizations concerned with scalability, flexibility and robustness of information management systems. Computer science graduate students and researchers focusing on enterprise information integration will also benefit.
Author |
: Sören Auer |
Publisher |
: Springer |
Total Pages |
: 218 |
Release |
: 2014-07-31 |
ISBN-10 |
: 9783319098463 |
ISBN-13 |
: 3319098462 |
Rating |
: 4/5 (63 Downloads) |
Synopsis Linked Open Data -- Creating Knowledge Out of Interlinked Data by : Sören Auer
Linked Open Data (LOD) is a pragmatic approach for realizing the Semantic Web vision of making the Web a global, distributed, semantics-based information system. This book presents an overview on the results of the research project “LOD2 -- Creating Knowledge out of Interlinked Data”. LOD2 is a large-scale integrating project co-funded by the European Commission within the FP7 Information and Communication Technologies Work Program. Commencing in September 2010, this 4-year project comprised leading Linked Open Data research groups, companies, and service providers from across 11 European countries and South Korea. The aim of this project was to advance the state-of-the-art in research and development in four key areas relevant for Linked Data, namely 1. RDF data management; 2. the extraction, creation, and enrichment of structured RDF data; 3. the interlinking and fusion of Linked Data from different sources and 4. the authoring, exploration and visualization of Linked Data.
Author |
: Thomas H. Davenport |
Publisher |
: Pearson Education |
Total Pages |
: 287 |
Release |
: 2013 |
ISBN-10 |
: 9780133039436 |
ISBN-13 |
: 0133039439 |
Rating |
: 4/5 (36 Downloads) |
Synopsis Enterprise Analytics by : Thomas H. Davenport
"International Institute for Analytics"--Dust jacket.
Author |
: Tom Heath |
Publisher |
: Springer Nature |
Total Pages |
: 122 |
Release |
: 2022-05-31 |
ISBN-10 |
: 9783031794322 |
ISBN-13 |
: 303179432X |
Rating |
: 4/5 (22 Downloads) |
Synopsis Linked Data by : Tom Heath
The World Wide Web has enabled the creation of a global information space comprising linked documents. As the Web becomes ever more enmeshed with our daily lives, there is a growing desire for direct access to raw data not currently available on the Web or bound up in hypertext documents. Linked Data provides a publishing paradigm in which not only documents, but also data, can be a first class citizen of the Web, thereby enabling the extension of the Web with a global data space based on open standards - the Web of Data. In this Synthesis lecture we provide readers with a detailed technical introduction to Linked Data. We begin by outlining the basic principles of Linked Data, including coverage of relevant aspects of Web architecture. The remainder of the text is based around two main themes - the publication and consumption of Linked Data. Drawing on a practical Linked Data scenario, we provide guidance and best practices on: architectural approaches to publishing Linked Data; choosing URIs and vocabularies to identify and describe resources; deciding what data to return in a description of a resource on the Web; methods and frameworks for automated linking of data sets; and testing and debugging approaches for Linked Data deployments. We give an overview of existing Linked Data applications and then examine the architectures that are used to consume Linked Data from the Web, alongside existing tools and frameworks that enable these. Readers can expect to gain a rich technical understanding of Linked Data fundamentals, as the basis for application development, research or further study. Table of Contents: List of Figures / Introduction / Principles of Linked Data / The Web of Data / Linked Data Design Considerations / Recipes for Publishing Linked Data / Consuming Linked Data / Summary and Outlook
Author |
: Stephen Orban |
Publisher |
: Createspace Independent Publishing Platform |
Total Pages |
: 334 |
Release |
: 2018-03-27 |
ISBN-10 |
: 1981924310 |
ISBN-13 |
: 9781981924318 |
Rating |
: 4/5 (10 Downloads) |
Synopsis Ahead in the Cloud by : Stephen Orban
Cloud computing is the most significant technology development of our lifetimes. It has made countless new businesses possible and presents a massive opportunity for large enterprises to innovate like startups and retire decades of technical debt. But making the most of the cloud requires much more from enterprises than just a technology change. Stephen Orban led Dow Jones's journey toward digital agility as their CIO and now leads AWS's Enterprise Strategy function, where he helps leaders from the largest companies in the world transform their businesses. As he demonstrates in this book, enterprises must re-train their people, evolve their processes, and transform their cultures as they move to the cloud. By bringing together his experiences and those of a number of business leaders, Orban shines a light on what works, what doesn't, and how enterprises can transform themselves using the cloud.
Author |
: Brenda L. Dietrich |
Publisher |
: IBM Press |
Total Pages |
: 223 |
Release |
: 2014-05-15 |
ISBN-10 |
: 9780133835885 |
ISBN-13 |
: 013383588X |
Rating |
: 4/5 (85 Downloads) |
Synopsis Analytics Across the Enterprise by : Brenda L. Dietrich
How to Transform Your Organization with Analytics: Insider Lessons from IBM’s Pioneering Experience Analytics is not just a technology: It is a better way to do business. Using analytics, you can systematically inform human judgment with data-driven insight. This doesn’t just improve decision-making: It also enables greater innovation and creativity in support of strategy. Your transformation won’t happen overnight; however, it is absolutely achievable, and the rewards are immense. This book demystifies your analytics journey by showing you how IBM has successfully leveraged analytics across the enterprise, worldwide. Three of IBM’s pioneering analytics practitioners share invaluable real-world perspectives on what does and doesn’t work and how you can start or accelerate your own transformation. This book provides an essential framework for becoming a smarter enterprise and shows through 31 case studies how IBM has derived value from analytics throughout its business. Coverage Includes Creating a smarter workforce through big data and analytics More effectively optimizing supply chain processes Systematically improving financial forecasting Managing financial risk, increasing operational efficiency, and creating business value Reaching more B2B or B2C customers and deepening their engagement Optimizing manufacturing and product management processes Deploying your sales organization to increase revenue and effectiveness Achieving new levels of excellence in services delivery and reducing risk Transforming IT to enable wider use of analytics “Measuring the immeasurable” and filling gaps in imperfect data Whatever your industry or role, whether a current or future leader, analytics can make you smarter and more competitive. Analytics Across the Enterprise shows how IBM did it--and how you can, too. Learn more about IBM Analytics
Author |
: Alex Gorelik |
Publisher |
: "O'Reilly Media, Inc." |
Total Pages |
: 232 |
Release |
: 2019-02-21 |
ISBN-10 |
: 9781491931509 |
ISBN-13 |
: 1491931507 |
Rating |
: 4/5 (09 Downloads) |
Synopsis The Enterprise Big Data Lake by : Alex Gorelik
The data lake is a daring new approach for harnessing the power of big data technology and providing convenient self-service capabilities. But is it right for your company? This book is based on discussions with practitioners and executives from more than a hundred organizations, ranging from data-driven companies such as Google, LinkedIn, and Facebook, to governments and traditional corporate enterprises. You’ll learn what a data lake is, why enterprises need one, and how to build one successfully with the best practices in this book. Alex Gorelik, CTO and founder of Waterline Data, explains why old systems and processes can no longer support data needs in the enterprise. Then, in a collection of essays about data lake implementation, you’ll examine data lake initiatives, analytic projects, experiences, and best practices from data experts working in various industries. Get a succinct introduction to data warehousing, big data, and data science Learn various paths enterprises take to build a data lake Explore how to build a self-service model and best practices for providing analysts access to the data Use different methods for architecting your data lake Discover ways to implement a data lake from experts in different industries
Author |
: Pushpak Sarkar |
Publisher |
: John Wiley & Sons |
Total Pages |
: 368 |
Release |
: 2015-07-31 |
ISBN-10 |
: 9781119055273 |
ISBN-13 |
: 111905527X |
Rating |
: 4/5 (73 Downloads) |
Synopsis Data as a Service by : Pushpak Sarkar
Data as a Service shows how organizations can leverage “data as a service” by providing real-life case studies on the various and innovative architectures and related patterns Comprehensive approach to introducing data as a service in any organization A reusable and flexible SOA based architecture framework Roadmap to introduce ‘big data as a service’ for potential clients Presents a thorough description of each component in the DaaS reference architecture so readers can implement solutions
Author |
: T. Warren Liao |
Publisher |
: World Scientific |
Total Pages |
: 816 |
Release |
: 2008-01-15 |
ISBN-10 |
: 9789812779861 |
ISBN-13 |
: 9812779868 |
Rating |
: 4/5 (61 Downloads) |
Synopsis Recent Advances in Data Mining of Enterprise Data by : T. Warren Liao
The main goal of the new field of data mining is the analysis of large and complex datasets. Some very important datasets may be derived from business and industrial activities. This kind of data is known as OC enterprise dataOCO. The common characteristic of such datasets is that the analyst wishes to analyze them for the purpose of designing a more cost-effective strategy for optimizing some type of performance measure, such as reducing production time, improving quality, eliminating wastes, or maximizing profit. Data in this category may describe different scheduling scenarios in a manufacturing environment, quality control of some process, fault diagnosis in the operation of a machine or process, risk analysis when issuing credit to applicants, management of supply chains in a manufacturing system, or data for business related decision-making. Sample Chapter(s). Foreword (37 KB). Chapter 1: Enterprise Data Mining: A Review and Research Directions (655 KB). Contents: Enterprise Data Mining: A Review and Research Directions (T W Liao); Application and Comparison of Classification Techniques in Controlling Credit Risk (L Yu et al.); Predictive Classification with Imbalanced Enterprise Data (S Daskalaki et al.); Data Mining Applications of Process Platform Formation for High Variety Production (J Jiao & L Zhang); Multivariate Control Charts from a Data Mining Perspective (G C Porzio & G Ragozini); Maintenance Planning Using Enterprise Data Mining (L P Khoo et al.); Mining Images of Cell-Based Assays (P Perner); Support Vector Machines and Applications (T B Trafalis & O O Oladunni); A Survey of Manifold-Based Learning Methods (X Huo et al.); and other papers. Readership: Graduate students in engineering, computer science, and business schools; researchers and practioners of data mining with emphazis of enterprise data mining."
Author |
: Edward Curry |
Publisher |
: Springer Nature |
Total Pages |
: 399 |
Release |
: 2021-08-01 |
ISBN-10 |
: 9783030681760 |
ISBN-13 |
: 3030681769 |
Rating |
: 4/5 (60 Downloads) |
Synopsis The Elements of Big Data Value by : Edward Curry
This open access book presents the foundations of the Big Data research and innovation ecosystem and the associated enablers that facilitate delivering value from data for business and society. It provides insights into the key elements for research and innovation, technical architectures, business models, skills, and best practices to support the creation of data-driven solutions and organizations. The book is a compilation of selected high-quality chapters covering best practices, technologies, experiences, and practical recommendations on research and innovation for big data. The contributions are grouped into four parts: · Part I: Ecosystem Elements of Big Data Value focuses on establishing the big data value ecosystem using a holistic approach to make it attractive and valuable to all stakeholders. · Part II: Research and Innovation Elements of Big Data Value details the key technical and capability challenges to be addressed for delivering big data value. · Part III: Business, Policy, and Societal Elements of Big Data Value investigates the need to make more efficient use of big data and understanding that data is an asset that has significant potential for the economy and society. · Part IV: Emerging Elements of Big Data Value explores the critical elements to maximizing the future potential of big data value. Overall, readers are provided with insights which can support them in creating data-driven solutions, organizations, and productive data ecosystems. The material represents the results of a collective effort undertaken by the European data community as part of the Big Data Value Public-Private Partnership (PPP) between the European Commission and the Big Data Value Association (BDVA) to boost data-driven digital transformation.