Linear and Non-Linear System Theory

Linear and Non-Linear System Theory
Author :
Publisher : CRC Press
Total Pages : 414
Release :
ISBN-10 : 9781000204315
ISBN-13 : 1000204316
Rating : 4/5 (15 Downloads)

Synopsis Linear and Non-Linear System Theory by : T Thyagarajan

Linear and Non-Linear System Theory focuses on the basics of linear and non-linear systems, optimal control and optimal estimation with an objective to understand the basics of state space approach linear and non-linear systems and its analysis thereof. Divided into eight chapters, materials cover an introduction to the advanced topics in the field of linear and non-linear systems, optimal control and estimation supported by mathematical tools, detailed case studies and numerical and exercise problems. This book is aimed at senior undergraduate and graduate students in electrical, instrumentation, electronics, chemical, control engineering and other allied branches of engineering. Features Covers both linear and non-linear system theory Explores state feedback control and state estimator concepts Discusses non-linear systems and phase plane analysis Includes non-linear system stability and bifurcation behaviour Elaborates optimal control and estimation

Nonlinear Systems Analysis

Nonlinear Systems Analysis
Author :
Publisher : SIAM
Total Pages : 515
Release :
ISBN-10 : 0898719186
ISBN-13 : 9780898719185
Rating : 4/5 (86 Downloads)

Synopsis Nonlinear Systems Analysis by : M. Vidyasagar

When M. Vidyasagar wrote the first edition of Nonlinear Systems Analysis, most control theorists considered the subject of nonlinear systems a mystery. Since then, advances in the application of differential geometric methods to nonlinear analysis have matured to a stage where every control theorist needs to possess knowledge of the basic techniques because virtually all physical systems are nonlinear in nature. The second edition, now republished in SIAM's Classics in Applied Mathematics series, provides a rigorous mathematical analysis of the behavior of nonlinear control systems under a variety of situations. It develops nonlinear generalizations of a large number of techniques and methods widely used in linear control theory. The book contains three extensive chapters devoted to the key topics of Lyapunov stability, input-output stability, and the treatment of differential geometric control theory. Audience: this text is designed for use at the graduate level in the area of nonlinear systems and as a resource for professional researchers and practitioners working in areas such as robotics, spacecraft control, motor control, and power systems.

Linear, Time-varying Approximations to Nonlinear Dynamical Systems

Linear, Time-varying Approximations to Nonlinear Dynamical Systems
Author :
Publisher : Springer Science & Business Media
Total Pages : 303
Release :
ISBN-10 : 9781849961004
ISBN-13 : 184996100X
Rating : 4/5 (04 Downloads)

Synopsis Linear, Time-varying Approximations to Nonlinear Dynamical Systems by : Maria Tomas-Rodriguez

Linear, Time-varying Approximations to Nonlinear Dynamical Systems introduces a new technique for analysing and controlling nonlinear systems. This method is general and requires only very mild conditions on the system nonlinearities, setting it apart from other techniques such as those – well-known – based on differential geometry. The authors cover many aspects of nonlinear systems including stability theory, control design and extensions to distributed parameter systems. Many of the classical and modern control design methods which can be applied to linear, time-varying systems can be extended to nonlinear systems by this technique. The implementation of the control is therefore simple and can be done with well-established classical methods. Many aspects of nonlinear systems, such as spectral theory which is important for the generalisation of frequency domain methods, can be approached by this method.

Artificial Neural Networks for Modelling and Control of Non-Linear Systems

Artificial Neural Networks for Modelling and Control of Non-Linear Systems
Author :
Publisher : Springer Science & Business Media
Total Pages : 242
Release :
ISBN-10 : 9781475724936
ISBN-13 : 1475724934
Rating : 4/5 (36 Downloads)

Synopsis Artificial Neural Networks for Modelling and Control of Non-Linear Systems by : Johan A.K. Suykens

Artificial neural networks possess several properties that make them particularly attractive for applications to modelling and control of complex non-linear systems. Among these properties are their universal approximation ability, their parallel network structure and the availability of on- and off-line learning methods for the interconnection weights. However, dynamic models that contain neural network architectures might be highly non-linear and difficult to analyse as a result. Artificial Neural Networks for Modelling and Control of Non-Linear Systems investigates the subject from a system theoretical point of view. However the mathematical theory that is required from the reader is limited to matrix calculus, basic analysis, differential equations and basic linear system theory. No preliminary knowledge of neural networks is explicitly required. The book presents both classical and novel network architectures and learning algorithms for modelling and control. Topics include non-linear system identification, neural optimal control, top-down model based neural control design and stability analysis of neural control systems. A major contribution of this book is to introduce NLq Theory as an extension towards modern control theory, in order to analyze and synthesize non-linear systems that contain linear together with static non-linear operators that satisfy a sector condition: neural state space control systems are an example. Moreover, it turns out that NLq Theory is unifying with respect to many problems arising in neural networks, systems and control. Examples show that complex non-linear systems can be modelled and controlled within NLq theory, including mastering chaos. The didactic flavor of this book makes it suitable for use as a text for a course on Neural Networks. In addition, researchers and designers will find many important new techniques, in particular NLq emTheory, that have applications in control theory, system theory, circuit theory and Time Series Analysis.

Nonlinear Systems

Nonlinear Systems
Author :
Publisher : Springer Science & Business Media
Total Pages : 690
Release :
ISBN-10 : 9781475731088
ISBN-13 : 1475731086
Rating : 4/5 (88 Downloads)

Synopsis Nonlinear Systems by : Shankar Sastry

There has been much excitement over the emergence of new mathematical techniques for the analysis and control of nonlinear systems. In addition, great technological advances have bolstered the impact of analytic advances and produced many new problems and applications which are nonlinear in an essential way. This book lays out in a concise mathematical framework the tools and methods of analysis which underlie this diversity of applications.

Nonlinear System Theory

Nonlinear System Theory
Author :
Publisher : Academic Press
Total Pages : 275
Release :
ISBN-10 : 9780080958651
ISBN-13 : 0080958656
Rating : 4/5 (51 Downloads)

Synopsis Nonlinear System Theory by : Casti

Nonlinear System Theory

Linear Systems Theory

Linear Systems Theory
Author :
Publisher : Princeton University Press
Total Pages : 352
Release :
ISBN-10 : 9780691179575
ISBN-13 : 0691179573
Rating : 4/5 (75 Downloads)

Synopsis Linear Systems Theory by : João P. Hespanha

A fully updated textbook on linear systems theory Linear systems theory is the cornerstone of control theory and a well-established discipline that focuses on linear differential equations from the perspective of control and estimation. This updated second edition of Linear Systems Theory covers the subject's key topics in a unique lecture-style format, making the book easy to use for instructors and students. João Hespanha looks at system representation, stability, controllability and state feedback, observability and state estimation, and realization theory. He provides the background for advanced modern control design techniques and feedback linearization and examines advanced foundational topics, such as multivariable poles and zeros and LQG/LQR. The textbook presents only the most essential mathematical derivations and places comments, discussion, and terminology in sidebars so that readers can follow the core material easily and without distraction. Annotated proofs with sidebars explain the techniques of proof construction, including contradiction, contraposition, cycles of implications to prove equivalence, and the difference between necessity and sufficiency. Annotated theoretical developments also use sidebars to discuss relevant commands available in MATLAB, allowing students to understand these tools. This second edition contains a large number of new practice exercises with solutions. Based on typical problems, these exercises guide students to succinct and precise answers, helping to clarify issues and consolidate knowledge. The book's balanced chapters can each be covered in approximately two hours of lecture time, simplifying course planning and student review. Easy-to-use textbook in unique lecture-style format Sidebars explain topics in further detail Annotated proofs and discussions of MATLAB commands Balanced chapters can each be taught in two hours of course lecture New practice exercises with solutions included

Quantitative Feedback Design of Linear and Nonlinear Control Systems

Quantitative Feedback Design of Linear and Nonlinear Control Systems
Author :
Publisher : Springer Science & Business Media
Total Pages : 382
Release :
ISBN-10 : 9781475763317
ISBN-13 : 147576331X
Rating : 4/5 (17 Downloads)

Synopsis Quantitative Feedback Design of Linear and Nonlinear Control Systems by : Oded Yaniv

Quantitative Feedback Design of Linear and Nonlinear Control Systems is a self-contained book dealing with the theory and practice of Quantitative Feedback Theory (QFT). The author presents feedback synthesis techniques for single-input single-output, multi-input multi-output linear time-invariant and nonlinear plants based on the QFT method. Included are design details and graphs which do not appear in the literature, which will enable engineers and researchers to understand QFT in greater depth. Engineers will be able to apply QFT and the design techniques to many applications, such as flight and chemical plant control, robotics, space, vehicle and military industries, and numerous other uses. All of the examples were implemented using Matlab® Version 5.3; the script file can be found at the author's Web site. QFT results in efficient designs because it synthesizes a controller for the exact amount of plant uncertainty, disturbances and required specifications. Quantitative Feedback Design of Linear and Nonlinear Control Systems is a pioneering work that illuminates QFT, making the theory - and practice - come alive.

Sampled-Data Models for Linear and Nonlinear Systems

Sampled-Data Models for Linear and Nonlinear Systems
Author :
Publisher : Springer Science & Business Media
Total Pages : 288
Release :
ISBN-10 : 9781447155621
ISBN-13 : 1447155629
Rating : 4/5 (21 Downloads)

Synopsis Sampled-Data Models for Linear and Nonlinear Systems by : Juan I. Yuz

Sampled-data Models for Linear and Nonlinear Systems provides a fresh new look at a subject with which many researchers may think themselves familiar. Rather than emphasising the differences between sampled-data and continuous-time systems, the authors proceed from the premise that, with modern sampling rates being as high as they are, it is becoming more appropriate to emphasise connections and similarities. The text is driven by three motives: · the ubiquity of computers in modern control and signal-processing equipment means that sampling of systems that really evolve continuously is unavoidable; · although superficially straightforward, sampling can easily produce erroneous results when not treated properly; and · the need for a thorough understanding of many aspects of sampling among researchers and engineers dealing with applications to which they are central. The authors tackle many misconceptions which, although appearing reasonable at first sight, are in fact either partially or completely erroneous. They also deal with linear and nonlinear, deterministic and stochastic cases. The impact of the ideas presented on several standard problems in signals and systems is illustrated using a number of applications. Academic researchers and graduate students in systems, control and signal processing will find the ideas presented in Sampled-data Models for Linear and Nonlinear Systems to be a useful manual for dealing with sampled-data systems, clearing away mistaken ideas and bringing the subject thoroughly up to date. Researchers in statistics and economics will also derive benefit from the reworking of ideas relating a model derived from data sampling to an original continuous system.

Linear and Non-Linear System Theory

Linear and Non-Linear System Theory
Author :
Publisher : CRC Press
Total Pages : 218
Release :
ISBN-10 : 9781000204339
ISBN-13 : 1000204332
Rating : 4/5 (39 Downloads)

Synopsis Linear and Non-Linear System Theory by : T Thyagarajan

Linear and Non-Linear System Theory focuses on the basics of linear and non-linear systems, optimal control and optimal estimation with an objective to understand the basics of state space approach linear and non-linear systems and its analysis thereof. Divided into eight chapters, materials cover an introduction to the advanced topics in the field of linear and non-linear systems, optimal control and estimation supported by mathematical tools, detailed case studies and numerical and exercise problems. This book is aimed at senior undergraduate and graduate students in electrical, instrumentation, electronics, chemical, control engineering and other allied branches of engineering. Features Covers both linear and non-linear system theory Explores state feedback control and state estimator concepts Discusses non-linear systems and phase plane analysis Includes non-linear system stability and bifurcation behaviour Elaborates optimal control and estimation