Lifetime Controlling Defects in Tool Steels

Lifetime Controlling Defects in Tool Steels
Author :
Publisher : Springer Science & Business Media
Total Pages : 234
Release :
ISBN-10 : 9783642216466
ISBN-13 : 3642216463
Rating : 4/5 (66 Downloads)

Synopsis Lifetime Controlling Defects in Tool Steels by : Christian Rudolf Sohar

In this thesis Christian Sohar describes his investigation into the gigacycle fatigue behavior of tool steels. In an interdisciplinary approach he uses knowledge and methods from a wide variety of disciplines including materials science, metallurgy, chemistry, physics and mechanical engineering. Christian gives a general introduction into steel tools and fatigue in materials. Later he extensively discusses the experimental techniques and results. Indeed it is the detail of the content in this thesis which makes it an invaluable resource for students entering the field and scientists working in related disciplines. Overall, the thesis helps us understand more about the mechanical behavior of metallic materials with complex microstructure and high hardness.

Reliability of Selective Laser Melted AlSi12 Alloy for Quasistatic and Fatigue Applications

Reliability of Selective Laser Melted AlSi12 Alloy for Quasistatic and Fatigue Applications
Author :
Publisher : Springer
Total Pages : 162
Release :
ISBN-10 : 9783658234256
ISBN-13 : 3658234253
Rating : 4/5 (56 Downloads)

Synopsis Reliability of Selective Laser Melted AlSi12 Alloy for Quasistatic and Fatigue Applications by : Shafaqat Siddique

Selective laser melting (SLM) has established itself as the most prominent additive manufacturing (AM) process for metallic structures in aerospace, automotive and medical industries. For a reliable employment of this process, it has to conform to the demanding requirements of these industries in terms of quasistatic and, especially, fatigue performance. Shafaqat Siddique identifies the influence of SLM processing conditions on the microstructural features, and their corresponding influence on the mechanical behavior of the processed AlSi12 alloy structures. The author also gives insight into integrated manufacturing by combining conventional and SLM processes to get the synergic benefits. Requirements for fatigue-resistant designs in additive manufacturing are highlighted, and a novel method is developed for agile fatigue life prediction. About the Author Shafaqat Siddique worked as Scientific Assistant at TU Dortmund University, Department of Materials Test Engineering (WPT), headed by Prof. Dr.-Ing. Frank Walther, and completed his Ph.D. research in cooperation with Laser Zentrum Nord (LZN) in Hamburg. He continues his post-doctoral research at TU Dortmund University, Germany.

Advances in powder metallurgy

Advances in powder metallurgy
Author :
Publisher : Elsevier Inc. Chapters
Total Pages : 71
Release :
ISBN-10 : 9780128088593
ISBN-13 : 0128088591
Rating : 4/5 (93 Downloads)

Synopsis Advances in powder metallurgy by : H. Danninger

Ferrous powder metallurgy (PM) makes up the majority of powder metallurgy products with regard to tonnage. Improving performance is the main trend for pressed and sintered parts, in particular the introduction of cost-effective alloy elements such as Cr and Mn. Furthermore, much can be gained in ferrous PM by elaborate secondary operations. In metal injection moulding (MIM) products, there is a clear trend towards increasingly complex shapes and microsized parts. PM tool steels offer a much finer and fully isotropic microstructure compared to their wrought counterparts and the carbide content may be much higher, resulting in excellent application properties.

Advances in Powder Metallurgy

Advances in Powder Metallurgy
Author :
Publisher : Elsevier
Total Pages : 624
Release :
ISBN-10 : 9780857098900
ISBN-13 : 085709890X
Rating : 4/5 (00 Downloads)

Synopsis Advances in Powder Metallurgy by : Isaac Chang

Powder metallurgy (PM) is a popular metal forming technology used to produce dense and precision components. Different powder and component forming routes can be used to create an end product with specific properties for a particular application or industry. Advances in powder metallurgy explores a range of materials and techniques used for powder metallurgy and the use of this technology across a variety of application areas.Part one discusses the forming and shaping of metal powders and includes chapters on atomisation techniques, electrolysis and plasma synthesis of metallic nanopowders. Part two goes on to highlight specific materials and their properties including advanced powdered steel alloys, porous metals and titanium alloys. Part three reviews the manufacture and densification of PM components and explores joining techniques, process optimisation in powder component manufacturing and non-destructive evaluation of PM parts. Finally, part four focusses on the applications of PM in the automotive industry and the use of PM in the production of cutting tools and biomaterials.Advances in powder metallurgy is a standard reference for structural engineers and component manufacturers in the metal forming industry, professionals working in industries that use PM components and academics with a research interest in the field. - Discusses the forming and shaping of metal powders and includes chapters on atomisation techniques - Highlights specific materials and their properties including advanced powdered steel alloys, porous metals and titanium alloys - Reviews the manufacture and densification of PM components and explores joining techniques

Farm Life;

Farm Life;
Author :
Publisher :
Total Pages : 590
Release :
ISBN-10 : UFL:31262084675403
ISBN-13 :
Rating : 4/5 (03 Downloads)

Synopsis Farm Life; by :

Ageing Studies and Lifetime Extension of Materials

Ageing Studies and Lifetime Extension of Materials
Author :
Publisher : Springer Science & Business Media
Total Pages : 659
Release :
ISBN-10 : 9781461512158
ISBN-13 : 1461512158
Rating : 4/5 (58 Downloads)

Synopsis Ageing Studies and Lifetime Extension of Materials by : Les Mallinson

The first International Conference on Ageing Studies and Lifetime Extension of Materials was held on th July 12-14 , 1999 at St. Catherine's College, Oxford, United Kingdom. Over 230 delegates attended during the three days and heard nearly ninety papers, together with over thirty poster presentations. Sixteen of these papers were keynotes from invited speakers eminent in their field of research. The proceedings were organised into six separate sessions: observation and understanding of real-time and accelerated ageing; experimental techniques; modelling and theoretical studies; lifetime prediction and validation; lifetime extension; and material design for ageing. In doing this, it was hoped to cover most issues of scientific concern inthefield ofmaterials ageing. One important aspect was that the conference did not concentrateon any particular group or type ofmaterial; rather the aim was to attract contributions from workers engaged in ageing studies with as wide a range of materials as possible. In this way, it was hoped that delegates could interactwith and learnfrom those whom they perhapswould not normally come across and that metallurgists could learn from polymer scientists, ceramicists could talk to modellers, and so on, in this important field. A read through the diverse papers contained within these proceedings will confirm that this aim was happily satisfied. Why hold such a meeting? In the modem world, engineered systems are expected to last longer.

A.S.M. Review of Metal Literature

A.S.M. Review of Metal Literature
Author :
Publisher :
Total Pages : 404
Release :
ISBN-10 : STANFORD:36105119014608
ISBN-13 :
Rating : 4/5 (08 Downloads)

Synopsis A.S.M. Review of Metal Literature by : American Society for Metals

Comprehensive Nuclear Materials

Comprehensive Nuclear Materials
Author :
Publisher : Elsevier
Total Pages : 4871
Release :
ISBN-10 : 9780081028667
ISBN-13 : 0081028660
Rating : 4/5 (67 Downloads)

Synopsis Comprehensive Nuclear Materials by :

Materials in a nuclear environment are exposed to extreme conditions of radiation, temperature and/or corrosion, and in many cases the combination of these makes the material behavior very different from conventional materials. This is evident for the four major technological challenges the nuclear technology domain is facing currently: (i) long-term operation of existing Generation II nuclear power plants, (ii) the design of the next generation reactors (Generation IV), (iii) the construction of the ITER fusion reactor in Cadarache (France), (iv) and the intermediate and final disposal of nuclear waste. In order to address these challenges, engineers and designers need to know the properties of a wide variety of materials under these conditions and to understand the underlying processes affecting changes in their behavior, in order to assess their performance and to determine the limits of operation. Comprehensive Nuclear Materials, Second Edition, Seven Volume Set provides broad ranging, validated summaries of all the major topics in the field of nuclear material research for fission as well as fusion reactor systems. Attention is given to the fundamental scientific aspects of nuclear materials: fuel and structural materials for fission reactors, waste materials, and materials for fusion reactors. The articles are written at a level that allows undergraduate students to understand the material, while providing active researchers with a ready reference resource of information. Most of the chapters from the first Edition have been revised and updated and a significant number of new topics are covered in completely new material. During the ten years between the two editions, the challenge for applications of nuclear materials has been significantly impacted by world events, public awareness, and technological innovation. Materials play a key role as enablers of new technologies, and we trust that this new edition of Comprehensive Nuclear Materials has captured the key recent developments. Critically reviews the major classes and functions of materials, supporting the selection, assessment, validation and engineering of materials in extreme nuclear environments Comprehensive resource for up-to-date and authoritative information which is not always available elsewhere, even in journals Provides an in-depth treatment of materials modeling and simulation, with a specific focus on nuclear issues Serves as an excellent entry point for students and researchers new to the field

Ceramic Materials Research

Ceramic Materials Research
Author :
Publisher : Elsevier
Total Pages : 484
Release :
ISBN-10 : 9780080983592
ISBN-13 : 0080983596
Rating : 4/5 (92 Downloads)

Synopsis Ceramic Materials Research by : R. Brook

The high expectations set on ceramic materials in recent years have always been balanced by the very considerable difficulties seen in reaching the required levels of reproducibility and cost. Indications of the significant progress, which can be seen in the papers presented in this volume, coupled with the recognition that considerable problems still lie between the state of the art and the full and confident exploitation of the many merits of ceramics, provide a healthy basis for the profitable selection of future research directions. The mastery of ceramic processing and the imaginative matching of the properties of these materials to diverse applications remain among the most promising sectors for technological development.

Fundamentals of Additive Manufacturing

Fundamentals of Additive Manufacturing
Author :
Publisher : CRC Press
Total Pages : 452
Release :
ISBN-10 : 9781040111765
ISBN-13 : 1040111769
Rating : 4/5 (65 Downloads)

Synopsis Fundamentals of Additive Manufacturing by : Helmi Youssef

Additive manufacturing (AM) is a manufacturing process that has emerged as a viable technology for the production of engineering components. The aspects associated with additive manufacturing, such as less material wastage, ease of manufacturing, less human involvement, fewer tool and fixture requirements, and less post-processing, make the process sustainable for industrial use. Further, this new technology has led to highly optimized product characteristics and functional aspects. This textbook introduces the basics of this new additive manufacturing technology to individuals who will be involved in the grand spectrum of manufacturing finished products. Fundamentals of Additive Manufacturing Technology: Principles, Technologies, and Applications provides knowledge and insight into various aspects of AM and deals with the basics, categories, materials, tooling, and equipment used. It presents a classified and complete description of the most common and recently developed additive manufacturing methods with applications, solved examples, and review questions. This textbook also emphasizes the fundamentals of the process, its capabilities, typical applications, advantages, and limitations, and also discusses the challenges, needs, and general recommendations for additive manufacturing. This fundamental textbook is written specifically for undergraduates in manufacturing, mechanical, industrial, and materials engineering disciplines for courses in manufacturing technology taught in engineering colleges and institutions all over the world. It also covers the needs of production and manufacturing engineers and technologists participating in related industries. Additionally, the textbook can be used by students in other disciplines concerned with design and manufacturing, such as automotive, biomedical, and aerospace engineering.