Lie Groups Structure Actions And Representations
Download Lie Groups Structure Actions And Representations full books in PDF, epub, and Kindle. Read online free Lie Groups Structure Actions And Representations ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Brian Hall |
Publisher |
: Springer |
Total Pages |
: 452 |
Release |
: 2015-05-11 |
ISBN-10 |
: 9783319134673 |
ISBN-13 |
: 3319134671 |
Rating |
: 4/5 (73 Downloads) |
Synopsis Lie Groups, Lie Algebras, and Representations by : Brian Hall
This textbook treats Lie groups, Lie algebras and their representations in an elementary but fully rigorous fashion requiring minimal prerequisites. In particular, the theory of matrix Lie groups and their Lie algebras is developed using only linear algebra, and more motivation and intuition for proofs is provided than in most classic texts on the subject. In addition to its accessible treatment of the basic theory of Lie groups and Lie algebras, the book is also noteworthy for including: a treatment of the Baker–Campbell–Hausdorff formula and its use in place of the Frobenius theorem to establish deeper results about the relationship between Lie groups and Lie algebras motivation for the machinery of roots, weights and the Weyl group via a concrete and detailed exposition of the representation theory of sl(3;C) an unconventional definition of semisimplicity that allows for a rapid development of the structure theory of semisimple Lie algebras a self-contained construction of the representations of compact groups, independent of Lie-algebraic arguments The second edition of Lie Groups, Lie Algebras, and Representations contains many substantial improvements and additions, among them: an entirely new part devoted to the structure and representation theory of compact Lie groups; a complete derivation of the main properties of root systems; the construction of finite-dimensional representations of semisimple Lie algebras has been elaborated; a treatment of universal enveloping algebras, including a proof of the Poincaré–Birkhoff–Witt theorem and the existence of Verma modules; complete proofs of the Weyl character formula, the Weyl dimension formula and the Kostant multiplicity formula. Review of the first edition: This is an excellent book. It deserves to, and undoubtedly will, become the standard text for early graduate courses in Lie group theory ... an important addition to the textbook literature ... it is highly recommended. — The Mathematical Gazette
Author |
: Alexander A. Kirillov |
Publisher |
: Cambridge University Press |
Total Pages |
: 237 |
Release |
: 2008-07-31 |
ISBN-10 |
: 9780521889698 |
ISBN-13 |
: 0521889693 |
Rating |
: 4/5 (98 Downloads) |
Synopsis An Introduction to Lie Groups and Lie Algebras by : Alexander A. Kirillov
This book is an introduction to semisimple Lie algebras. It is concise and informal, with numerous exercises and examples.
Author |
: Joachim Hilgert |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 742 |
Release |
: 2011-11-06 |
ISBN-10 |
: 9780387847948 |
ISBN-13 |
: 0387847944 |
Rating |
: 4/5 (48 Downloads) |
Synopsis Structure and Geometry of Lie Groups by : Joachim Hilgert
This self-contained text is an excellent introduction to Lie groups and their actions on manifolds. The authors start with an elementary discussion of matrix groups, followed by chapters devoted to the basic structure and representation theory of finite dimensinal Lie algebras. They then turn to global issues, demonstrating the key issue of the interplay between differential geometry and Lie theory. Special emphasis is placed on homogeneous spaces and invariant geometric structures. The last section of the book is dedicated to the structure theory of Lie groups. Particularly, they focus on maximal compact subgroups, dense subgroups, complex structures, and linearity. This text is accessible to a broad range of mathematicians and graduate students; it will be useful both as a graduate textbook and as a research reference.
Author |
: Alan Huckleberry |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 422 |
Release |
: 2013-08-04 |
ISBN-10 |
: 9781461471936 |
ISBN-13 |
: 1461471931 |
Rating |
: 4/5 (36 Downloads) |
Synopsis Lie Groups: Structure, Actions, and Representations by : Alan Huckleberry
Lie Groups: Structures, Actions, and Representations, In Honor of Joseph A. Wolf on the Occasion of his 75th Birthday consists of invited expository and research articles on new developments arising from Wolf's profound contributions to mathematics. Due to Professor Wolf’s broad interests, outstanding mathematicians and scholars in a wide spectrum of mathematical fields contributed to the volume. Algebraic, geometric, and analytic methods are employed. More precisely, finite groups and classical finite dimensional, as well as infinite-dimensional Lie groups, and algebras play a role. Actions on classical symmetric spaces, and on abstract homogeneous and representation spaces are discussed. Contributions in the area of representation theory involve numerous viewpoints, including that of algebraic groups and various analytic aspects of harmonic analysis. Contributors D. Akhiezer T. Oshima A. Andrada I. Pacharoni M. L. Barberis F. Ricci L. Barchini S. Rosenberg I. Dotti N. Shimeno M. Eastwood J. Tirao V. Fischer S. Treneer T. Kobayashi C.T.C. Wall A. Korányi D. Wallace B. Kostant K. Wiboonton P. Kostelec F. Xu K.-H. Neeb O. Yakimova G. Olafsson R. Zierau B. Ørsted
Author |
: Brian C. Hall |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 376 |
Release |
: 2003-08-07 |
ISBN-10 |
: 0387401229 |
ISBN-13 |
: 9780387401225 |
Rating |
: 4/5 (29 Downloads) |
Synopsis Lie Groups, Lie Algebras, and Representations by : Brian C. Hall
This book provides an introduction to Lie groups, Lie algebras, and repre sentation theory, aimed at graduate students in mathematics and physics. Although there are already several excellent books that cover many of the same topics, this book has two distinctive features that I hope will make it a useful addition to the literature. First, it treats Lie groups (not just Lie alge bras) in a way that minimizes the amount of manifold theory needed. Thus, I neither assume a prior course on differentiable manifolds nor provide a con densed such course in the beginning chapters. Second, this book provides a gentle introduction to the machinery of semi simple groups and Lie algebras by treating the representation theory of SU(2) and SU(3) in detail before going to the general case. This allows the reader to see roots, weights, and the Weyl group "in action" in simple cases before confronting the general theory. The standard books on Lie theory begin immediately with the general case: a smooth manifold that is also a group. The Lie algebra is then defined as the space of left-invariant vector fields and the exponential mapping is defined in terms of the flow along such vector fields. This approach is undoubtedly the right one in the long run, but it is rather abstract for a reader encountering such things for the first time.
Author |
: J.J. Duistermaat |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 352 |
Release |
: 2012-12-06 |
ISBN-10 |
: 9783642569364 |
ISBN-13 |
: 3642569366 |
Rating |
: 4/5 (64 Downloads) |
Synopsis Lie Groups by : J.J. Duistermaat
This (post) graduate text gives a broad introduction to Lie groups and algebras with an emphasis on differential geometrical methods. It analyzes the structure of compact Lie groups in terms of the action of the group on itself by conjugation, culminating in the classification of the representations of compact Lie groups and their realization as sections of holomorphic line bundles over flag manifolds. Appendices provide background reviews.
Author |
: William Fulton |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 616 |
Release |
: 1991 |
ISBN-10 |
: 0387974954 |
ISBN-13 |
: 9780387974958 |
Rating |
: 4/5 (54 Downloads) |
Synopsis Representation Theory by : William Fulton
Introducing finite-dimensional representations of Lie groups and Lie algebras, this example-oriented book works from representation theory of finite groups, through Lie groups and Lie algrbras to the finite dimensional representations of the classical groups.
Author |
: Arkadij L. Onishchik |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 347 |
Release |
: 2012-12-06 |
ISBN-10 |
: 9783642743344 |
ISBN-13 |
: 364274334X |
Rating |
: 4/5 (44 Downloads) |
Synopsis Lie Groups and Algebraic Groups by : Arkadij L. Onishchik
This book is based on the notes of the authors' seminar on algebraic and Lie groups held at the Department of Mechanics and Mathematics of Moscow University in 1967/68. Our guiding idea was to present in the most economic way the theory of semisimple Lie groups on the basis of the theory of algebraic groups. Our main sources were A. Borel's paper [34], C. ChevalIey's seminar [14], seminar "Sophus Lie" [15] and monographs by C. Chevalley [4], N. Jacobson [9] and J-P. Serre [16, 17]. In preparing this book we have completely rearranged these notes and added two new chapters: "Lie groups" and "Real semisimple Lie groups". Several traditional topics of Lie algebra theory, however, are left entirely disregarded, e.g. universal enveloping algebras, characters of linear representations and (co)homology of Lie algebras. A distinctive feature of this book is that almost all the material is presented as a sequence of problems, as it had been in the first draft of the seminar's notes. We believe that solving these problems may help the reader to feel the seminar's atmosphere and master the theory. Nevertheless, all the non-trivial ideas, and sometimes solutions, are contained in hints given at the end of each section. The proofs of certain theorems, which we consider more difficult, are given directly in the main text. The book also contains exercises, the majority of which are an essential complement to the main contents.
Author |
: Dimitrij Akhiezer |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 212 |
Release |
: 2012-12-06 |
ISBN-10 |
: 9783322802675 |
ISBN-13 |
: 3322802671 |
Rating |
: 4/5 (75 Downloads) |
Synopsis Lie Group Actions in Complex Analysis by : Dimitrij Akhiezer
The main topic of this book is the sudy of the interaction between two major subjects of modern mathematics, namely, the theory of Lie groups with its specific methods and ways of thinking on the one hand and complex analysis with all its analytic, algebraic and geometric aspects. More specifically, the author concentrates on the double role of Lie groups in complex analysis, namely, as groups of biholomorphic self-made of certain complex analytic objects on the one hand and as a special class of complex manifolds with an additional strong structure on the other hand. The book starts from the basics of this subject and introduces the reader into many fields of recent research.
Author |
: T. Bröcker |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 323 |
Release |
: 2013-03-14 |
ISBN-10 |
: 9783662129180 |
ISBN-13 |
: 3662129183 |
Rating |
: 4/5 (80 Downloads) |
Synopsis Representations of Compact Lie Groups by : T. Bröcker
This introduction to the representation theory of compact Lie groups follows Herman Weyl’s original approach. It discusses all aspects of finite-dimensional Lie theory, consistently emphasizing the groups themselves. Thus, the presentation is more geometric and analytic than algebraic. It is a useful reference and a source of explicit computations. Each section contains a range of exercises, and 24 figures help illustrate geometric concepts.