Lie Groups and Subsemigroups with Surjective Exponential Function

Lie Groups and Subsemigroups with Surjective Exponential Function
Author :
Publisher : American Mathematical Soc.
Total Pages : 189
Release :
ISBN-10 : 9780821806418
ISBN-13 : 0821806416
Rating : 4/5 (18 Downloads)

Synopsis Lie Groups and Subsemigroups with Surjective Exponential Function by : Karl Heinrich Hofmann

In the structure theory of real Lie groups, there is still information lacking about the exponential function. Most notably, there are no general necessary and sufficient conditions for the exponential function to be surjective. It is surprising that for subsemigroups of Lie groups, the question of the surjectivity of the exponential function can be answered. Under nature reductions setting aside the "group part" of the problem, subsemigroups of Lie groups with surjective exponential function are completely classified and explicitly constructed in this memoir. There are fewer than one would think and the proofs are harder than one would expect, requiring some innovative twists. The main protagonists on the scene are SL(2, R) and its universal covering group, almost abelian solvable Lie groups (ie. vector groups extended by homotheties), and compact Lie groups. This text will also be of interest to those working in algebra and algebraic geometry.

Lie Groups and Subsemigroups with Surjective Exponential Function

Lie Groups and Subsemigroups with Surjective Exponential Function
Author :
Publisher : Oxford University Press, USA
Total Pages : 189
Release :
ISBN-10 : 1470402076
ISBN-13 : 9781470402075
Rating : 4/5 (76 Downloads)

Synopsis Lie Groups and Subsemigroups with Surjective Exponential Function by : Karl Heinrich Hofmann

In the structure theory of real Lie groups, there is still information lacking about the exponential function. Most notably, there are no general necessary and sufficient conditions for the exponential function to be surjective. It is surprising that for subsemigroups of Lie groups, the question of the surjectivity of the exponential function can be answered. Under nature reductions setting aside the group part of the problem, subsemigroups of Lie groups with surjective exponential function are completely classified and explicitly constructed in this memoir. There are fewer than one would think and the proofs are harder than one would expect, requiring some innovative twists.

Positivity in Lie Theory

Positivity in Lie Theory
Author :
Publisher : Walter de Gruyter
Total Pages : 305
Release :
ISBN-10 : 9783110811186
ISBN-13 : 3110811189
Rating : 4/5 (86 Downloads)

Synopsis Positivity in Lie Theory by : Joachim Hilgert

The aim of the series is to present new and important developments in pure and applied mathematics. Well established in the community over two decades, it offers a large library of mathematics including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers wishing to thoroughly study the topic. Editorial Board Lev Birbrair, Universidade Federal do Ceará, Fortaleza, Brasil Walter D. Neumann, Columbia University, New York, USA Markus J. Pflaum, University of Colorado, Boulder, USA Dierk Schleicher, Jacobs University, Bremen, Germany Katrin Wendland, University of Freiburg, Germany Honorary Editor Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Titles in planning include Yuri A. Bahturin, Identical Relations in Lie Algebras (2019) Yakov G. Berkovich and Z. Janko, Groups of Prime Power Order, Volume 6 (2019) Yakov G. Berkovich, Lev G. Kazarin, and Emmanuel M. Zhmud', Characters of Finite Groups, Volume 2 (2019) Jorge Herbert Soares de Lira, Variational Problems for Hypersurfaces in Riemannian Manifolds (2019) Volker Mayer, Mariusz Urbański, and Anna Zdunik, Random and Conformal Dynamical Systems (2021) Ioannis Diamantis, Boštjan Gabrovšek, Sofia Lambropoulou, and Maciej Mroczkowski, Knot Theory of Lens Spaces (2021)

The Lie Theory of Connected Pro-Lie Groups

The Lie Theory of Connected Pro-Lie Groups
Author :
Publisher : European Mathematical Society
Total Pages : 704
Release :
ISBN-10 : 3037190329
ISBN-13 : 9783037190326
Rating : 4/5 (29 Downloads)

Synopsis The Lie Theory of Connected Pro-Lie Groups by : Karl Heinrich Hofmann

Lie groups were introduced in 1870 by the Norwegian mathematician Sophus Lie. A century later Jean Dieudonne quipped that Lie groups had moved to the center of mathematics and that one cannot undertake anything without them. If a complete topological group $G$ can be approximated by Lie groups in the sense that every identity neighborhood $U$ of $G$ contains a normal subgroup $N$ such that $G/N$ is a Lie group, then it is called a pro-Lie group. Every locally compact connected topological group and every compact group is a pro-Lie group. While the class of locally compact groups is not closed under the formation of arbitrary products, the class of pro-Lie groups is. For half a century, locally compact pro-Lie groups have drifted through the literature, yet this is the first book which systematically treats the Lie and structure theory of pro-Lie groups irrespective of local compactness. This study fits very well into the current trend which addresses infinite-dimensional Lie groups. The results of this text are based on a theory of pro-Lie algebras which parallels the structure theory of finite-dimensional real Lie algebras to an astonishing degree, even though it has had to overcome greater technical obstacles. This book exposes a Lie theory of connected pro-Lie groups (and hence of connected locally compact groups) and illuminates the manifold ways in which their structure theory reduces to that of compact groups on the one hand and of finite-dimensional Lie groups on the other. It is a continuation of the authors' fundamental monograph on the structure of compact groups (1998, 2006) and is an invaluable tool for researchers in topological groups, Lie theory, harmonic analysis, and representation theory. It is written to be accessible to advanced graduate students wishing to study this fascinating and important area of current research, which has so many fruitful interactions with other fields of mathematics.

The Structure of Compact Groups

The Structure of Compact Groups
Author :
Publisher : Walter de Gruyter GmbH & Co KG
Total Pages : 1036
Release :
ISBN-10 : 9783110695991
ISBN-13 : 3110695995
Rating : 4/5 (91 Downloads)

Synopsis The Structure of Compact Groups by : Karl H. Hofmann

This book is designed both as a textbook for high-level graduate courses and as a reference for researchers who need to apply the structure and representation theory of compact groups. A gentle introduction to compact groups and their representation theory is followed by self-contained courses on linear and compact Lie groups, and on locally compact abelian groups. This fourth edition was updated with the latest developments in the field.

Periodic Locally Compact Groups

Periodic Locally Compact Groups
Author :
Publisher : Walter de Gruyter GmbH & Co KG
Total Pages : 457
Release :
ISBN-10 : 9783110599084
ISBN-13 : 3110599082
Rating : 4/5 (84 Downloads)

Synopsis Periodic Locally Compact Groups by : Wolfgang Herfort

This authoritative book on periodic locally compact groups is divided into three parts: The first part covers the necessary background material on locally compact groups including the Chabauty topology on the space of closed subgroups of a locally compact group, its Sylow theory, and the introduction, classifi cation and use of inductively monothetic groups. The second part develops a general structure theory of locally compact near abelian groups, pointing out some of its connections with number theory and graph theory and illustrating it by a large exhibit of examples. Finally, the third part uses this theory for a complete, enlarged and novel presentation of Mukhin’s pioneering work generalizing to locally compact groups Iwasawa’s early investigations of the lattice of subgroups of abstract groups. Contents Part I: Background information on locally compact groups Locally compact spaces and groups Periodic locally compact groups and their Sylow theory Abelian periodic groups Scalar automorphisms and the mastergraph Inductively monothetic groups Part II: Near abelian groups The definition of near abelian groups Important consequences of the definitions Trivial near abelian groups The class of near abelian groups The Sylow structure of periodic nontrivial near abelian groups and their prime graphs A list of examples Part III: Applications Classifying topologically quasihamiltonian groups Locally compact groups with a modular subgroup lattice Strongly topologically quasihamiltonian groups

Diagram Groups

Diagram Groups
Author :
Publisher : American Mathematical Soc.
Total Pages : 130
Release :
ISBN-10 : 9780821806395
ISBN-13 : 0821806394
Rating : 4/5 (95 Downloads)

Synopsis Diagram Groups by : Victor Guba

Diagram groups are groups consisting of spherical diagrams (pictures) over monoid presentations. They can be also defined as fundamental groups of the Squier complexes associated with monoid presentations. The authors show that the class of diagram groups contains some well-known groups, such as the R. Thompson group F. This class is closed under free products, finite direct products, and some other group-theoretical operations. The authors develop combinatorics on diagrams similar to the combinatorics on words. This helps in finding some structure and algorithmic properties of diagram groups. Some of these properties are new even for R. Thompson's group F. In particular, the authors describe the centralizers of elements in F, prove that it has solvable conjugacy problems, etc.

Hopf Algebras, Polynomial Formal Groups, and Raynaud Orders

Hopf Algebras, Polynomial Formal Groups, and Raynaud Orders
Author :
Publisher : American Mathematical Soc.
Total Pages : 133
Release :
ISBN-10 : 9780821810774
ISBN-13 : 0821810774
Rating : 4/5 (74 Downloads)

Synopsis Hopf Algebras, Polynomial Formal Groups, and Raynaud Orders by : Lindsay Childs

This volume gives two new methods for constructing $p$-elementary Hopf algebra orders over the valuation ring $R$ of a local field $K$ containing the $p$-adic rational numbers. One method constructs Hopf orders using isogenies of commutative degree 2 polynomial formal groups of dimension $n$, and is built on a systematic study of such formal group laws. The other method uses an exponential generalization of a 1992 construction of Greither. Both constructions yield Raynaud orders as iterated extensions of rank $p$ Hopf algebras; the exponential method obtains all Raynaud orders whose invariants satisfy a certain $p$-adic condition.

Abelian Galois Cohomology of Reductive Groups

Abelian Galois Cohomology of Reductive Groups
Author :
Publisher : American Mathematical Soc.
Total Pages : 65
Release :
ISBN-10 : 9780821806500
ISBN-13 : 0821806505
Rating : 4/5 (00 Downloads)

Synopsis Abelian Galois Cohomology of Reductive Groups by : Mikhail Borovoi

In this volume, a new function H 2/ab (K, G) of abelian Galois cohomology is introduced from the category of connected reductive groups G over a field K of characteristic 0 to the category of abelian groups. The abelian Galois cohomology and the abelianization map ab1: H1 (K, G) -- H 2/ab (K, G) are used to give a functorial, almost explicit description of the usual Galois cohomology set H1 (K, G) when K is a number field

Algebraic and Strong Splittings of Extensions of Banach Algebras

Algebraic and Strong Splittings of Extensions of Banach Algebras
Author :
Publisher : American Mathematical Soc.
Total Pages : 129
Release :
ISBN-10 : 9780821810583
ISBN-13 : 0821810588
Rating : 4/5 (83 Downloads)

Synopsis Algebraic and Strong Splittings of Extensions of Banach Algebras by : William G. Bade

In this volume, the authors address the following: Let $A$ be a Banach algebra, and let $\sum\:\ 0\rightarrow I\rightarrow\frak A\overset\pi\to\longrightarrow A\rightarrow 0$ be an extension of $A$, where $\frak A$ is a Banach algebra and $I$ is a closed ideal in $\frak A$. The extension splits algebraically (respectively, splits strongly) if there is a homomorphism (respectively, continuous homomorphism) $\theta\: A\rightarrow\frak A$ such that $\pi\circ\theta$ is the identity on $A$. Consider first for which Banach algebras $A$ it is true that every extension of $A$ in a particular class of extensions splits, either algebraically or strongly, and second for which Banach algebras it is true that every extension of $A$ in a particular class which splits algebraically also splits strongly. These questions are closely related to the question when the algebra $\frak A$ has a (strong) Wedderburn decomposition. The main technique for resolving these questions involves the Banach cohomology group $\cal H2(A,E)$ for a Banach $A$-bimodule $E$, and related cohomology groups. Later chapters are particularly concerned with the case where the ideal $I$ is finite-dimensional. Results are obtained for many of the standard Banach algebras $A$.