Lectures On The Approximate Computation Of Expectations
Download Lectures On The Approximate Computation Of Expectations full books in PDF, epub, and Kindle. Read online free Lectures On The Approximate Computation Of Expectations ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Charles Stein |
Publisher |
: IMS |
Total Pages |
: 172 |
Release |
: 1986 |
ISBN-10 |
: 0940600080 |
ISBN-13 |
: 9780940600089 |
Rating |
: 4/5 (80 Downloads) |
Synopsis Approximate Computation of Expectations by : Charles Stein
Author |
: Charles Stein |
Publisher |
: |
Total Pages |
: 216 |
Release |
: 1987 |
ISBN-10 |
: UOM:39015015715504 |
ISBN-13 |
: |
Rating |
: 4/5 (04 Downloads) |
Synopsis Lectures on the Approximate Computation of Expectations by : Charles Stein
Author |
: A. D. Barbour |
Publisher |
: World Scientific |
Total Pages |
: 240 |
Release |
: 2005 |
ISBN-10 |
: 9789812562807 |
ISBN-13 |
: 981256280X |
Rating |
: 4/5 (07 Downloads) |
Synopsis An Introduction to Stein's Method by : A. D. Barbour
A common theme in probability theory is the approximation of complicated probability distributions by simpler ones, the central limit theorem being a classical example. Stein's method is a tool which makes this possible in a wide variety of situations. Traditional approaches, for example using Fourier analysis, become awkward to carry through in situations in which dependence plays an important part, whereas Stein's method can often still be applied to great effect. In addition, the method delivers estimates for the error in the approximation, and not just a proof of convergence. Nor is there in principle any restriction on the distribution to be approximated; it can equally well be normal, or Poisson, or that of the whole path of a random process, though the techniques have so far been worked out in much more detail for the classical approximation theorems.This volume of lecture notes provides a detailed introduction to the theory and application of Stein's method, in a form suitable for graduate students who want to acquaint themselves with the method. It includes chapters treating normal, Poisson and compound Poisson approximation, approximation by Poisson processes, and approximation by an arbitrary distribution, written by experts in the different fields. The lectures take the reader from the very basics of Stein's method to the limits of current knowledge.
Author |
: Louis Hsiao Yun Chen |
Publisher |
: Walter de Gruyter |
Total Pages |
: 232 |
Release |
: 1992 |
ISBN-10 |
: 3110122332 |
ISBN-13 |
: 9783110122336 |
Rating |
: 4/5 (32 Downloads) |
Synopsis Probability Theory by : Louis Hsiao Yun Chen
The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications.
Author |
: T. W. Anderson |
Publisher |
: Academic Press |
Total Pages |
: 412 |
Release |
: 2014-05-10 |
ISBN-10 |
: 9781483216003 |
ISBN-13 |
: 1483216004 |
Rating |
: 4/5 (03 Downloads) |
Synopsis Probability, Statistics, and Mathematics by : T. W. Anderson
Probability, Statistics, and Mathematics: Papers in Honor of Samuel Karlin is a collection of papers dealing with probability, statistics, and mathematics. Conceived in honor of Polish-born mathematician Samuel Karlin, the book covers a wide array of topics, from the second-order moments of a stationary Markov chain to the exponentiality of the local time at hitting times for reflecting diffusions. Smoothed limit theorems for equilibrium processes are also discussed. Comprised of 24 chapters, this book begins with an introduction to the second-order moments of a stationary Markov chain, paying particular attention to the consequences of the autoregressive structure of the vector-valued process and how to estimate the stationary probabilities from a finite sequence of observations. Subsequent chapters focus on A. Selberg's second beta integral and an integral of mehta; a normal approximation for the number of local maxima of a random function on a graph; nonnegative polynomials on polyhedra; and the fundamental period of the queue with Markov-modulated arrivals. The rate of escape problem for a class of random walks is also considered. This monograph is intended for students and practitioners in the fields of statistics, mathematics, and economics.
Author |
: Rick Durrett |
Publisher |
: Cambridge University Press |
Total Pages |
: |
Release |
: 2010-08-30 |
ISBN-10 |
: 9781139491136 |
ISBN-13 |
: 113949113X |
Rating |
: 4/5 (36 Downloads) |
Synopsis Probability by : Rick Durrett
This classic introduction to probability theory for beginning graduate students covers laws of large numbers, central limit theorems, random walks, martingales, Markov chains, ergodic theorems, and Brownian motion. It is a comprehensive treatment concentrating on the results that are the most useful for applications. Its philosophy is that the best way to learn probability is to see it in action, so there are 200 examples and 450 problems. The fourth edition begins with a short chapter on measure theory to orient readers new to the subject.
Author |
: Robert W. Keener |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 543 |
Release |
: 2010-09-08 |
ISBN-10 |
: 9780387938394 |
ISBN-13 |
: 0387938397 |
Rating |
: 4/5 (94 Downloads) |
Synopsis Theoretical Statistics by : Robert W. Keener
Intended as the text for a sequence of advanced courses, this book covers major topics in theoretical statistics in a concise and rigorous fashion. The discussion assumes a background in advanced calculus, linear algebra, probability, and some analysis and topology. Measure theory is used, but the notation and basic results needed are presented in an initial chapter on probability, so prior knowledge of these topics is not essential. The presentation is designed to expose students to as many of the central ideas and topics in the discipline as possible, balancing various approaches to inference as well as exact, numerical, and large sample methods. Moving beyond more standard material, the book includes chapters introducing bootstrap methods, nonparametric regression, equivariant estimation, empirical Bayes, and sequential design and analysis. The book has a rich collection of exercises. Several of them illustrate how the theory developed in the book may be used in various applications. Solutions to many of the exercises are included in an appendix.
Author |
: Madan Lal Puri |
Publisher |
: VSP |
Total Pages |
: 760 |
Release |
: 2003-01-01 |
ISBN-10 |
: 9067643858 |
ISBN-13 |
: 9789067643856 |
Rating |
: 4/5 (58 Downloads) |
Synopsis Selected collected works by : Madan Lal Puri
Professor Puri is one of the most versatile and prolific researchers in the world in mathematical statistics. His research areas include nonparametric statistics, order statistics, limit theory under mixing, time series, splines, tests of normality, generalized inverses of matrices and related topics, stochastic processes, statistics of directional data, random sets, and fuzzy sets and fuzzy measures. His fundamental contributions in developing new rank-based methods and precise evaluation of the standard procedures, asymptotic expansions of distributions of rank statistics, as well as large deviation results concerning them, span such areas as analysis of variance, analysis of covariance, multivariate analysis, and time series, to mention a few. His in-depth analysis has resulted in pioneering research contributions to prominent journals that have substantial impact on current research. This book together with the other two volumes (Volume 1: Nonparametric Methods in Statistics and Related Topics; Volume 3: Time Series, Fuzzy Analysis and Miscellaneous Topics), are a concerted effort to make his research works easily available to the research community. The sheer volume of the research output by him and his collaborators, coupled with the broad spectrum of the subject matters investigated, and the great number of outlets where the papers were published, attach special significance in making these works easily accessible. The papers selected for inclusion in this work have been classified into three volumes each consisting of several parts. All three volumes carry a final part consisting of the contents of the other two, as well as the complete list of Professor Puri'spublications.
Author |
: Peter J. Bickel |
Publisher |
: CRC Press |
Total Pages |
: 487 |
Release |
: 2015-11-04 |
ISBN-10 |
: 9781498722704 |
ISBN-13 |
: 1498722709 |
Rating |
: 4/5 (04 Downloads) |
Synopsis Mathematical Statistics by : Peter J. Bickel
Mathematical Statistics: Basic Ideas and Selected Topics, Volume II presents important statistical concepts, methods, and tools not covered in the authors' previous volume. This second volume focuses on inference in non- and semiparametric models. It not only reexamines the procedures introduced in the first volume from a more sophisticated point o
Author |
: O.E. Barndorff-Nielsen |
Publisher |
: CRC Press |
Total Pages |
: 306 |
Release |
: 2000-08-09 |
ISBN-10 |
: 1420035983 |
ISBN-13 |
: 9781420035988 |
Rating |
: 4/5 (83 Downloads) |
Synopsis Complex Stochastic Systems by : O.E. Barndorff-Nielsen
Complex stochastic systems comprises a vast area of research, from modelling specific applications to model fitting, estimation procedures, and computing issues. The exponential growth in computing power over the last two decades has revolutionized statistical analysis and led to rapid developments and great progress in this emerging field. In Complex Stochastic Systems, leading researchers address various statistical aspects of the field, illustrated by some very concrete applications. A Primer on Markov Chain Monte Carlo by Peter J. Green provides a wide-ranging mixture of the mathematical and statistical ideas, enriched with concrete examples and more than 100 references. Causal Inference from Graphical Models by Steffen L. Lauritzen explores causal concepts in connection with modelling complex stochastic systems, with focus on the effect of interventions in a given system. State Space and Hidden Markov Models by Hans R. Künschshows the variety of applications of this concept to time series in engineering, biology, finance, and geophysics. Monte Carlo Methods on Genetic Structures by Elizabeth A. Thompson investigates special complex systems and gives a concise introduction to the relevant biological methodology. Renormalization of Interacting Diffusions by Frank den Hollander presents recent results on the large space-time behavior of infinite systems of interacting diffusions. Stein's Method for Epidemic Processes by Gesine Reinert investigates the mean field behavior of a general stochastic epidemic with explicit bounds. Individually, these articles provide authoritative, tutorial-style exposition and recent results from various subjects related to complex stochastic systems. Collectively, they link these separate areas of study to form the first comprehensive overview of this rapidly developing field.