Lectures On Curves On An Algebraic Surface
Download Lectures On Curves On An Algebraic Surface full books in PDF, epub, and Kindle. Read online free Lectures On Curves On An Algebraic Surface ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: David Mumford |
Publisher |
: Princeton University Press |
Total Pages |
: 220 |
Release |
: 1966-08-21 |
ISBN-10 |
: 9780691079936 |
ISBN-13 |
: 0691079935 |
Rating |
: 4/5 (36 Downloads) |
Synopsis Lectures on Curves on an Algebraic Surface by : David Mumford
These lectures, delivered by Professor Mumford at Harvard in 1963-1964, are devoted to a study of properties of families of algebraic curves, on a non-singular projective algebraic curve defined over an algebraically closed field of arbitrary characteristic. The methods and techniques of Grothendieck, which have so changed the character of algebraic geometry in recent years, are used systematically throughout. Thus the classical material is presented from a new viewpoint.
Author |
: David Mumford |
Publisher |
: Princeton University Press |
Total Pages |
: 219 |
Release |
: 2016-03-02 |
ISBN-10 |
: 9781400882069 |
ISBN-13 |
: 1400882060 |
Rating |
: 4/5 (69 Downloads) |
Synopsis Lectures on Curves on an Algebraic Surface by : David Mumford
These lectures, delivered by Professor Mumford at Harvard in 1963-1964, are devoted to a study of properties of families of algebraic curves, on a non-singular projective algebraic curve defined over an algebraically closed field of arbitrary characteristic. The methods and techniques of Grothendieck, which have so changed the character of algebraic geometry in recent years, are used systematically throughout. Thus the classical material is presented from a new viewpoint.
Author |
: Mauro Beltrametti |
Publisher |
: European Mathematical Society |
Total Pages |
: 512 |
Release |
: 2009 |
ISBN-10 |
: 3037190647 |
ISBN-13 |
: 9783037190647 |
Rating |
: 4/5 (47 Downloads) |
Synopsis Lectures on Curves, Surfaces and Projective Varieties by : Mauro Beltrametti
This book offers a wide-ranging introduction to algebraic geometry along classical lines. It consists of lectures on topics in classical algebraic geometry, including the basic properties of projective algebraic varieties, linear systems of hypersurfaces, algebraic curves (with special emphasis on rational curves), linear series on algebraic curves, Cremona transformations, rational surfaces, and notable examples of special varieties like the Segre, Grassmann, and Veronese varieties. An integral part and special feature of the presentation is the inclusion of many exercises, not easy to find in the literature and almost all with complete solutions. The text is aimed at students in the last two years of an undergraduate program in mathematics. It contains some rather advanced topics suitable for specialized courses at the advanced undergraduate or beginning graduate level, as well as interesting topics for a senior thesis. The prerequisites have been deliberately limited to basic elements of projective geometry and abstract algebra. Thus, for example, some knowledge of the geometry of subspaces and properties of fields is assumed. The book will be welcomed by teachers and students of algebraic geometry who are seeking a clear and panoramic path leading from the basic facts about linear subspaces, conics and quadrics to a systematic discussion of classical algebraic varieties and the tools needed to study them. The text provides a solid foundation for approaching more advanced and abstract literature.
Author |
: Daniel Huybrechts |
Publisher |
: Cambridge University Press |
Total Pages |
: 499 |
Release |
: 2016-09-26 |
ISBN-10 |
: 9781316797259 |
ISBN-13 |
: 1316797252 |
Rating |
: 4/5 (59 Downloads) |
Synopsis Lectures on K3 Surfaces by : Daniel Huybrechts
K3 surfaces are central objects in modern algebraic geometry. This book examines this important class of Calabi–Yau manifolds from various perspectives in eighteen self-contained chapters. It starts with the basics and guides the reader to recent breakthroughs, such as the proof of the Tate conjecture for K3 surfaces and structural results on Chow groups. Powerful general techniques are introduced to study the many facets of K3 surfaces, including arithmetic, homological, and differential geometric aspects. In this context, the book covers Hodge structures, moduli spaces, periods, derived categories, birational techniques, Chow rings, and deformation theory. Famous open conjectures, for example the conjectures of Calabi, Weil, and Artin–Tate, are discussed in general and for K3 surfaces in particular, and each chapter ends with questions and open problems. Based on lectures at the advanced graduate level, this book is suitable for courses and as a reference for researchers.
Author |
: Robert Friedman |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 333 |
Release |
: 2012-12-06 |
ISBN-10 |
: 9781461216889 |
ISBN-13 |
: 1461216885 |
Rating |
: 4/5 (89 Downloads) |
Synopsis Algebraic Surfaces and Holomorphic Vector Bundles by : Robert Friedman
A novel feature of the book is its integrated approach to algebraic surface theory and the study of vector bundle theory on both curves and surfaces. While the two subjects remain separate through the first few chapters, they become much more tightly interconnected as the book progresses. Thus vector bundles over curves are studied to understand ruled surfaces, and then reappear in the proof of Bogomolov's inequality for stable bundles, which is itself applied to study canonical embeddings of surfaces via Reider's method. Similarly, ruled and elliptic surfaces are discussed in detail, before the geometry of vector bundles over such surfaces is analysed. Many of the results on vector bundles appear for the first time in book form, backed by many examples, both of surfaces and vector bundles, and over 100 exercises forming an integral part of the text. Aimed at graduates with a thorough first-year course in algebraic geometry, as well as more advanced students and researchers in the areas of algebraic geometry, gauge theory, or 4-manifold topology, many of the results on vector bundles will also be of interest to physicists studying string theory.
Author |
: Otto Forster |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 262 |
Release |
: 2012-12-06 |
ISBN-10 |
: 9781461259619 |
ISBN-13 |
: 1461259614 |
Rating |
: 4/5 (19 Downloads) |
Synopsis Lectures on Riemann Surfaces by : Otto Forster
This book grew out of lectures on Riemann surfaces given by Otto Forster at the universities of Munich, Regensburg, and Münster. It provides a concise modern introduction to this rewarding subject, as well as presenting methods used in the study of complex manifolds in the special case of complex dimension one. From the reviews: "This book deserves very serious consideration as a text for anyone contemplating giving a course on Riemann surfaces."—-MATHEMATICAL REVIEWS
Author |
: Keith Kendig |
Publisher |
: Courier Dover Publications |
Total Pages |
: 324 |
Release |
: 2015-02-18 |
ISBN-10 |
: 9780486786087 |
ISBN-13 |
: 0486786080 |
Rating |
: 4/5 (87 Downloads) |
Synopsis Elementary Algebraic Geometry by : Keith Kendig
"This second edition of an introductory text is intended for advanced undergraduate and graduate students who have taken a one-year course in algebra and are familiar with complex analysis. Concrete examples and exercises illuminate chapters on curves, ring theory, arbitrary dimension, and other topics. Includes numerous updated figures specially redrawn for this edition. 2014 edition"--
Author |
: Robin Hartshorne |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 511 |
Release |
: 2013-06-29 |
ISBN-10 |
: 9781475738490 |
ISBN-13 |
: 1475738498 |
Rating |
: 4/5 (90 Downloads) |
Synopsis Algebraic Geometry by : Robin Hartshorne
An introduction to abstract algebraic geometry, with the only prerequisites being results from commutative algebra, which are stated as needed, and some elementary topology. More than 400 exercises distributed throughout the book offer specific examples as well as more specialised topics not treated in the main text, while three appendices present brief accounts of some areas of current research. This book can thus be used as textbook for an introductory course in algebraic geometry following a basic graduate course in algebra. Robin Hartshorne studied algebraic geometry with Oscar Zariski and David Mumford at Harvard, and with J.-P. Serre and A. Grothendieck in Paris. He is the author of "Residues and Duality", "Foundations of Projective Geometry", "Ample Subvarieties of Algebraic Varieties", and numerous research titles.
Author |
: Phillip A. Griffiths |
Publisher |
: American Mathematical Soc. |
Total Pages |
: 225 |
Release |
: 1989 |
ISBN-10 |
: 0821845373 |
ISBN-13 |
: 9780821845370 |
Rating |
: 4/5 (73 Downloads) |
Synopsis Introduction to Algebraic Curves by : Phillip A. Griffiths
This book differs from a number of recent books on this subject in that it combines analytic and geometric methods at the outset, so that the reader can grasp the basic results of the subject. Although such modern techniques of sheaf theory, cohomology, and commutative algebra are not covered here, the book provides a solid foundation to proceed to more advanced texts in general algebraic geometry, complex manifolds, and Riemann surfaces, as well as algebraic curves. Containing numerous exercises this book would make an excellent introductory text.
Author |
: Rick Miranda |
Publisher |
: American Mathematical Soc. |
Total Pages |
: 414 |
Release |
: 1995 |
ISBN-10 |
: 9780821802687 |
ISBN-13 |
: 0821802682 |
Rating |
: 4/5 (87 Downloads) |
Synopsis Algebraic Curves and Riemann Surfaces by : Rick Miranda
In this book, Miranda takes the approach that algebraic curves are best encountered for the first time over the complex numbers, where the reader's classical intuition about surfaces, integration, and other concepts can be brought into play. Therefore, many examples of algebraic curves are presented in the first chapters. In this way, the book begins as a primer on Riemann surfaces, with complex charts and meromorphic functions taking centre stage. But the main examples come fromprojective curves, and slowly but surely the text moves toward the algebraic category. Proofs of the Riemann-Roch and Serre Dualtiy Theorems are presented in an algebraic manner, via an adaptation of the adelic proof, expressed completely in terms of solving a Mittag-Leffler problem. Sheaves andcohomology are introduced as a unifying device in the later chapters, so that their utility and naturalness are immediately obvious. Requiring a background of one term of complex variable theory and a year of abstract algebra, this is an excellent graduate textbook for a second-term course in complex variables or a year-long course in algebraic geometry.