Machine Learning and Big Data

Machine Learning and Big Data
Author :
Publisher : John Wiley & Sons
Total Pages : 544
Release :
ISBN-10 : 9781119654742
ISBN-13 : 1119654742
Rating : 4/5 (42 Downloads)

Synopsis Machine Learning and Big Data by : Uma N. Dulhare

This book is intended for academic and industrial developers, exploring and developing applications in the area of big data and machine learning, including those that are solving technology requirements, evaluation of methodology advances and algorithm demonstrations. The intent of this book is to provide awareness of algorithms used for machine learning and big data in the academic and professional community. The 17 chapters are divided into 5 sections: Theoretical Fundamentals; Big Data and Pattern Recognition; Machine Learning: Algorithms & Applications; Machine Learning's Next Frontier and Hands-On and Case Study. While it dwells on the foundations of machine learning and big data as a part of analytics, it also focuses on contemporary topics for research and development. In this regard, the book covers machine learning algorithms and their modern applications in developing automated systems. Subjects covered in detail include: Mathematical foundations of machine learning with various examples. An empirical study of supervised learning algorithms like Naïve Bayes, KNN and semi-supervised learning algorithms viz. S3VM, Graph-Based, Multiview. Precise study on unsupervised learning algorithms like GMM, K-mean clustering, Dritchlet process mixture model, X-means and Reinforcement learning algorithm with Q learning, R learning, TD learning, SARSA Learning, and so forth. Hands-on machine leaning open source tools viz. Apache Mahout, H2O. Case studies for readers to analyze the prescribed cases and present their solutions or interpretations with intrusion detection in MANETS using machine learning. Showcase on novel user-cases: Implications of Electronic Governance as well as Pragmatic Study of BD/ML technologies for agriculture, healthcare, social media, industry, banking, insurance and so on.

Learning With Big Data

Learning With Big Data
Author :
Publisher : HarperCollins
Total Pages : 63
Release :
ISBN-10 : 9780544355507
ISBN-13 : 0544355504
Rating : 4/5 (07 Downloads)

Synopsis Learning With Big Data by : Viktor Mayer-Schönberger

Homework assignments that learn from students. Courses tailored to fit individual pupils. Textbooks that talk back. This is tomorrow’s education landscape, thanks to the power of big data. These advances go beyond online courses. As the New York Times-bestselling authors of Big Data explain, the truly fascinating changes are actually occurring in how we measure students’ progress and how we can use that data to improve education for everyone, in real time, both on- and offline. Learning with Big Data offers an eye-opening, insight-packed tour through these new trends, for educators, administrators, and readers interested in the latest developments in business and technology.

Demystifying Big Data, Machine Learning, and Deep Learning for Healthcare Analytics

Demystifying Big Data, Machine Learning, and Deep Learning for Healthcare Analytics
Author :
Publisher : Academic Press
Total Pages : 374
Release :
ISBN-10 : 9780128220443
ISBN-13 : 0128220449
Rating : 4/5 (43 Downloads)

Synopsis Demystifying Big Data, Machine Learning, and Deep Learning for Healthcare Analytics by : Pradeep N

Demystifying Big Data, Machine Learning, and Deep Learning for Healthcare Analytics presents the changing world of data utilization, especially in clinical healthcare. Various techniques, methodologies, and algorithms are presented in this book to organize data in a structured manner that will assist physicians in the care of patients and help biomedical engineers and computer scientists understand the impact of these techniques on healthcare analytics. The book is divided into two parts: Part 1 covers big data aspects such as healthcare decision support systems and analytics-related topics. Part 2 focuses on the current frameworks and applications of deep learning and machine learning, and provides an outlook on future directions of research and development. The entire book takes a case study approach, providing a wealth of real-world case studies in the application chapters to act as a foundational reference for biomedical engineers, computer scientists, healthcare researchers, and clinicians. - Provides a comprehensive reference for biomedical engineers, computer scientists, advanced industry practitioners, researchers, and clinicians to understand and develop healthcare analytics using advanced tools and technologies - Includes in-depth illustrations of advanced techniques via dataset samples, statistical tables, and graphs with algorithms and computational methods for developing new applications in healthcare informatics - Unique case study approach provides readers with insights for practical clinical implementation

Demystifying Big Data and Machine Learning for Healthcare

Demystifying Big Data and Machine Learning for Healthcare
Author :
Publisher : CRC Press
Total Pages : 227
Release :
ISBN-10 : 9781315389301
ISBN-13 : 1315389304
Rating : 4/5 (01 Downloads)

Synopsis Demystifying Big Data and Machine Learning for Healthcare by : Prashant Natarajan

Healthcare transformation requires us to continually look at new and better ways to manage insights – both within and outside the organization today. Increasingly, the ability to glean and operationalize new insights efficiently as a byproduct of an organization’s day-to-day operations is becoming vital to hospitals and health systems ability to survive and prosper. One of the long-standing challenges in healthcare informatics has been the ability to deal with the sheer variety and volume of disparate healthcare data and the increasing need to derive veracity and value out of it. Demystifying Big Data and Machine Learning for Healthcare investigates how healthcare organizations can leverage this tapestry of big data to discover new business value, use cases, and knowledge as well as how big data can be woven into pre-existing business intelligence and analytics efforts. This book focuses on teaching you how to: Develop skills needed to identify and demolish big-data myths Become an expert in separating hype from reality Understand the V’s that matter in healthcare and why Harmonize the 4 C’s across little and big data Choose data fi delity over data quality Learn how to apply the NRF Framework Master applied machine learning for healthcare Conduct a guided tour of learning algorithms Recognize and be prepared for the future of artificial intelligence in healthcare via best practices, feedback loops, and contextually intelligent agents (CIAs) The variety of data in healthcare spans multiple business workflows, formats (structured, un-, and semi-structured), integration at point of care/need, and integration with existing knowledge. In order to deal with these realities, the authors propose new approaches to creating a knowledge-driven learning organization-based on new and existing strategies, methods and technologies. This book will address the long-standing challenges in healthcare informatics and provide pragmatic recommendations on how to deal with them.

Big Data and Learning Analytics in Higher Education

Big Data and Learning Analytics in Higher Education
Author :
Publisher : Springer
Total Pages : 287
Release :
ISBN-10 : 9783319065205
ISBN-13 : 3319065203
Rating : 4/5 (05 Downloads)

Synopsis Big Data and Learning Analytics in Higher Education by : Ben Kei Daniel

​This book focuses on the uses of big data in the context of higher education. The book describes a wide range of administrative and operational data gathering processes aimed at assessing institutional performance and progress in order to predict future performance, and identifies potential issues related to academic programming, research, teaching and learning​. Big data refers to data which is fundamentally too big and complex and moves too fast for the processing capacity of conventional database systems. The value of big data is the ability to identify useful data and turn it into useable information by identifying patterns and deviations from patterns​.

Big Data in Education

Big Data in Education
Author :
Publisher : SAGE
Total Pages : 281
Release :
ISBN-10 : 9781526416322
ISBN-13 : 1526416328
Rating : 4/5 (22 Downloads)

Synopsis Big Data in Education by : Ben Williamson

Big data has the power to transform education and educational research. Governments, researchers and commercial companies are only beginning to understand the potential that big data offers in informing policy ideas, contributing to the development of new educational tools and innovative ways of conducting research. This cutting-edge overview explores the current state-of-play, looking at big data and the related topic of computer code to examine the implications for education and schooling for today and the near future. Key topics include: · The role of learning analytics and educational data science in schools · A critical appreciation of code, algorithms and infrastructures · The rise of ‘cognitive classrooms’, and the practical application of computational algorithms to learning environments · Important digital research methods issues for researchers This is essential reading for anyone studying or working in today′s education environment!

Machine Learning and Big Data Analytics Paradigms: Analysis, Applications and Challenges

Machine Learning and Big Data Analytics Paradigms: Analysis, Applications and Challenges
Author :
Publisher : Springer Nature
Total Pages : 648
Release :
ISBN-10 : 9783030593384
ISBN-13 : 303059338X
Rating : 4/5 (84 Downloads)

Synopsis Machine Learning and Big Data Analytics Paradigms: Analysis, Applications and Challenges by : Aboul Ella Hassanien

This book is intended to present the state of the art in research on machine learning and big data analytics. The accepted chapters covered many themes including artificial intelligence and data mining applications, machine learning and applications, deep learning technology for big data analytics, and modeling, simulation, and security with big data. It is a valuable resource for researchers in the area of big data analytics and its applications.

Applications of Machine Learning in Big-Data Analytics and Cloud Computing

Applications of Machine Learning in Big-Data Analytics and Cloud Computing
Author :
Publisher : CRC Press
Total Pages : 346
Release :
ISBN-10 : 9781000793550
ISBN-13 : 1000793559
Rating : 4/5 (50 Downloads)

Synopsis Applications of Machine Learning in Big-Data Analytics and Cloud Computing by : Subhendu Kumar Pani

Cloud Computing and Big Data technologies have become the new descriptors of the digital age. The global amount of digital data has increased more than nine times in volume in just five years and by 2030 its volume may reach a staggering 65 trillion gigabytes. This explosion of data has led to opportunities and transformation in various areas such as healthcare, enterprises, industrial manufacturing and transportation. New Cloud Computing and Big Data tools endow researchers and analysts with novel techniques and opportunities to collect, manage and analyze the vast quantities of data. In Cloud and Big Data Analytics, the two areas of Swarm Intelligence and Deep Learning are a developing type of Machine Learning techniques that show enormous potential for solving complex business problems. Deep Learning enables computers to analyze large quantities of unstructured and binary data and to deduce relationships without requiring specific models or programming instructions. This book introduces the state-of-the-art trends and advances in the use of Machine Learning in Cloud and Big Data Analytics. The book will serve as a reference for Data Scientists, systems architects, developers, new researchers and graduate level students in Computer and Data science. The book will describe the concepts necessary to understand current Machine Learning issues, challenges and possible solutions as well as upcoming trends in Big Data Analytics.

Machine Learning for Big Data Analysis

Machine Learning for Big Data Analysis
Author :
Publisher : Walter de Gruyter GmbH & Co KG
Total Pages : 194
Release :
ISBN-10 : 9783110551433
ISBN-13 : 3110551438
Rating : 4/5 (33 Downloads)

Synopsis Machine Learning for Big Data Analysis by : Siddhartha Bhattacharyya

This volume comprises six well-versed contributed chapters devoted to report the latest fi ndings on the applications of machine learning for big data analytics. Big data is a term for data sets that are so large or complex that traditional data processing application software is inadequate to deal with them. The possible challenges in this direction include capture, storage, analysis, data curation, search, sharing, transfer, visualization, querying, updating and information privacy. Big data analytics is the process of examining large and varied data sets - i.e., big data - to uncover hidden patterns, unknown correlations, market trends, customer preferences and other useful information that can help organizations make more-informed business decisions. This volume is intended to be used as a reference by undergraduate and post graduate students of the disciplines of computer science, electronics and telecommunication, information science and electrical engineering. THE SERIES: FRONTIERS IN COMPUTATIONAL INTELLIGENCE The series Frontiers In Computational Intelligence is envisioned to provide comprehensive coverage and understanding of cutting edge research in computational intelligence. It intends to augment the scholarly discourse on all topics relating to the advances in artifi cial life and machine learning in the form of metaheuristics, approximate reasoning, and robotics. Latest research fi ndings are coupled with applications to varied domains of engineering and computer sciences. This field is steadily growing especially with the advent of novel machine learning algorithms being applied to different domains of engineering and technology. The series brings together leading researchers that intend to continue to advance the fi eld and create a broad knowledge about the most recent research.

Advanced Deep Learning Applications in Big Data Analytics

Advanced Deep Learning Applications in Big Data Analytics
Author :
Publisher : IGI Global
Total Pages : 351
Release :
ISBN-10 : 9781799827931
ISBN-13 : 1799827933
Rating : 4/5 (31 Downloads)

Synopsis Advanced Deep Learning Applications in Big Data Analytics by : Bouarara, Hadj Ahmed

Interest in big data has swelled within the scholarly community as has increased attention to the internet of things (IoT). Algorithms are constructed in order to parse and analyze all this data to facilitate the exchange of information. However, big data has suffered from problems in connectivity, scalability, and privacy since its birth. The application of deep learning algorithms has helped process those challenges and remains a major issue in today’s digital world. Advanced Deep Learning Applications in Big Data Analytics is a pivotal reference source that aims to develop new architecture and applications of deep learning algorithms in big data and the IoT. Highlighting a wide range of topics such as artificial intelligence, cloud computing, and neural networks, this book is ideally designed for engineers, data analysts, data scientists, IT specialists, programmers, marketers, entrepreneurs, researchers, academicians, and students.