Learning Numpy Array
Download Learning Numpy Array full books in PDF, epub, and Kindle. Read online free Learning Numpy Array ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Ivan Idris |
Publisher |
: Packt Publishing Ltd |
Total Pages |
: 254 |
Release |
: 2014-06-13 |
ISBN-10 |
: 9781783983919 |
ISBN-13 |
: 1783983914 |
Rating |
: 4/5 (19 Downloads) |
Synopsis Learning NumPy Array by : Ivan Idris
A step-by-step guide, packed with examples of practical numerical analysis that will give you a comprehensive, but concise overview of NumPy. This book is for programmers, scientists, or engineers, who have basic Python knowledge and would like to be able to do numerical computations with Python.
Author |
: Chris Albon |
Publisher |
: "O'Reilly Media, Inc." |
Total Pages |
: 285 |
Release |
: 2018-03-09 |
ISBN-10 |
: 9781491989333 |
ISBN-13 |
: 1491989335 |
Rating |
: 4/5 (33 Downloads) |
Synopsis Machine Learning with Python Cookbook by : Chris Albon
This practical guide provides nearly 200 self-contained recipes to help you solve machine learning challenges you may encounter in your daily work. If you’re comfortable with Python and its libraries, including pandas and scikit-learn, you’ll be able to address specific problems such as loading data, handling text or numerical data, model selection, and dimensionality reduction and many other topics. Each recipe includes code that you can copy and paste into a toy dataset to ensure that it actually works. From there, you can insert, combine, or adapt the code to help construct your application. Recipes also include a discussion that explains the solution and provides meaningful context. This cookbook takes you beyond theory and concepts by providing the nuts and bolts you need to construct working machine learning applications. You’ll find recipes for: Vectors, matrices, and arrays Handling numerical and categorical data, text, images, and dates and times Dimensionality reduction using feature extraction or feature selection Model evaluation and selection Linear and logical regression, trees and forests, and k-nearest neighbors Support vector machines (SVM), naïve Bayes, clustering, and neural networks Saving and loading trained models
Author |
: Wes McKinney |
Publisher |
: "O'Reilly Media, Inc." |
Total Pages |
: 553 |
Release |
: 2017-09-25 |
ISBN-10 |
: 9781491957615 |
ISBN-13 |
: 1491957611 |
Rating |
: 4/5 (15 Downloads) |
Synopsis Python for Data Analysis by : Wes McKinney
Get complete instructions for manipulating, processing, cleaning, and crunching datasets in Python. Updated for Python 3.6, the second edition of this hands-on guide is packed with practical case studies that show you how to solve a broad set of data analysis problems effectively. You’ll learn the latest versions of pandas, NumPy, IPython, and Jupyter in the process. Written by Wes McKinney, the creator of the Python pandas project, this book is a practical, modern introduction to data science tools in Python. It’s ideal for analysts new to Python and for Python programmers new to data science and scientific computing. Data files and related material are available on GitHub. Use the IPython shell and Jupyter notebook for exploratory computing Learn basic and advanced features in NumPy (Numerical Python) Get started with data analysis tools in the pandas library Use flexible tools to load, clean, transform, merge, and reshape data Create informative visualizations with matplotlib Apply the pandas groupby facility to slice, dice, and summarize datasets Analyze and manipulate regular and irregular time series data Learn how to solve real-world data analysis problems with thorough, detailed examples
Author |
: Eli Bressert |
Publisher |
: "O'Reilly Media, Inc." |
Total Pages |
: 68 |
Release |
: 2012 |
ISBN-10 |
: 9781449305468 |
ISBN-13 |
: 1449305466 |
Rating |
: 4/5 (68 Downloads) |
Synopsis SciPy and NumPy by : Eli Bressert
"Optimizing and boosting your Python programming"--Cover.
Author |
: Jake VanderPlas |
Publisher |
: "O'Reilly Media, Inc." |
Total Pages |
: 609 |
Release |
: 2016-11-21 |
ISBN-10 |
: 9781491912133 |
ISBN-13 |
: 1491912138 |
Rating |
: 4/5 (33 Downloads) |
Synopsis Python Data Science Handbook by : Jake VanderPlas
For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you’ll learn how to use: IPython and Jupyter: provide computational environments for data scientists using Python NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python Matplotlib: includes capabilities for a flexible range of data visualizations in Python Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms
Author |
: Travis Oliphant |
Publisher |
: CreateSpace |
Total Pages |
: 364 |
Release |
: 2015-09-15 |
ISBN-10 |
: 151730007X |
ISBN-13 |
: 9781517300074 |
Rating |
: 4/5 (7X Downloads) |
Synopsis Guide to NumPy by : Travis Oliphant
This is the second edition of Travis Oliphant's A Guide to NumPy originally published electronically in 2006. It is designed to be a reference that can be used by practitioners who are familiar with Python but want to learn more about NumPy and related tools. In this updated edition, new perspectives are shared as well as descriptions of new distributed processing tools in the ecosystem, and how Numba can be used to compile code using NumPy arrays. Travis Oliphant is the co-founder and CEO of Continuum Analytics. Continuum Analytics develops Anaconda, the leading modern open source analytics platform powered by Python. Travis, who is a passionate advocate of open source technology, has a Ph.D. from Mayo Clinic and B.S. and M.S. degrees in Mathematics and Electrical Engineering from Brigham Young University. Since 1997, he has worked extensively with Python for computational and data science. He was the primary creator of the NumPy package and founding contributor to the SciPy package. He was also a co-founder and past board member of NumFOCUS, a non-profit for reproducible and accessible science that supports the PyData stack. He also served on the board of the Python Software Foundation.
Author |
: Ivan Idris |
Publisher |
: Packt Publishing Ltd |
Total Pages |
: 357 |
Release |
: 2012-10-25 |
ISBN-10 |
: 9781849518932 |
ISBN-13 |
: 1849518939 |
Rating |
: 4/5 (32 Downloads) |
Synopsis NumPy Cookbook by : Ivan Idris
Written in Cookbook style, the code examples will take your Numpy skills to the next level. This book will take Python developers with basic Numpy skills to the next level through some practical recipes.
Author |
: Cyrille Rossant |
Publisher |
: Packt Publishing Ltd |
Total Pages |
: 899 |
Release |
: 2014-09-25 |
ISBN-10 |
: 9781783284825 |
ISBN-13 |
: 178328482X |
Rating |
: 4/5 (25 Downloads) |
Synopsis IPython Interactive Computing and Visualization Cookbook by : Cyrille Rossant
Intended to anyone interested in numerical computing and data science: students, researchers, teachers, engineers, analysts, hobbyists... Basic knowledge of Python/NumPy is recommended. Some skills in mathematics will help you understand the theory behind the computational methods.
Author |
: Felix Zumstein |
Publisher |
: "O'Reilly Media, Inc." |
Total Pages |
: 366 |
Release |
: 2021-03-04 |
ISBN-10 |
: 9781492080954 |
ISBN-13 |
: 1492080950 |
Rating |
: 4/5 (54 Downloads) |
Synopsis Python for Excel by : Felix Zumstein
While Excel remains ubiquitous in the business world, recent Microsoft feedback forums are full of requests to include Python as an Excel scripting language. In fact, it's the top feature requested. What makes this combination so compelling? In this hands-on guide, Felix Zumstein--creator of xlwings, a popular open source package for automating Excel with Python--shows experienced Excel users how to integrate these two worlds efficiently. Excel has added quite a few new capabilities over the past couple of years, but its automation language, VBA, stopped evolving a long time ago. Many Excel power users have already adopted Python for daily automation tasks. This guide gets you started. Use Python without extensive programming knowledge Get started with modern tools, including Jupyter notebooks and Visual Studio code Use pandas to acquire, clean, and analyze data and replace typical Excel calculations Automate tedious tasks like consolidation of Excel workbooks and production of Excel reports Use xlwings to build interactive Excel tools that use Python as a calculation engine Connect Excel to databases and CSV files and fetch data from the internet using Python code Use Python as a single tool to replace VBA, Power Query, and Power Pivot
Author |
: Robert Johansson |
Publisher |
: Apress |
Total Pages |
: 709 |
Release |
: 2018-12-24 |
ISBN-10 |
: 9781484242469 |
ISBN-13 |
: 1484242467 |
Rating |
: 4/5 (69 Downloads) |
Synopsis Numerical Python by : Robert Johansson
Leverage the numerical and mathematical modules in Python and its standard library as well as popular open source numerical Python packages like NumPy, SciPy, FiPy, matplotlib and more. This fully revised edition, updated with the latest details of each package and changes to Jupyter projects, demonstrates how to numerically compute solutions and mathematically model applications in big data, cloud computing, financial engineering, business management and more. Numerical Python, Second Edition, presents many brand-new case study examples of applications in data science and statistics using Python, along with extensions to many previous examples. Each of these demonstrates the power of Python for rapid development and exploratory computing due to its simple and high-level syntax and multiple options for data analysis. After reading this book, readers will be familiar with many computing techniques including array-based and symbolic computing, visualization and numerical file I/O, equation solving, optimization, interpolation and integration, and domain-specific computational problems, such as differential equation solving, data analysis, statistical modeling and machine learning. What You'll Learn Work with vectors and matrices using NumPy Plot and visualize data with Matplotlib Perform data analysis tasks with Pandas and SciPy Review statistical modeling and machine learning with statsmodels and scikit-learn Optimize Python code using Numba and Cython Who This Book Is For Developers who want to understand how to use Python and its related ecosystem for numerical computing.