Big Data Analytics with Spark

Big Data Analytics with Spark
Author :
Publisher : Apress
Total Pages : 290
Release :
ISBN-10 : 9781484209646
ISBN-13 : 1484209648
Rating : 4/5 (46 Downloads)

Synopsis Big Data Analytics with Spark by : Mohammed Guller

Big Data Analytics with Spark is a step-by-step guide for learning Spark, which is an open-source fast and general-purpose cluster computing framework for large-scale data analysis. You will learn how to use Spark for different types of big data analytics projects, including batch, interactive, graph, and stream data analysis as well as machine learning. In addition, this book will help you become a much sought-after Spark expert. Spark is one of the hottest Big Data technologies. The amount of data generated today by devices, applications and users is exploding. Therefore, there is a critical need for tools that can analyze large-scale data and unlock value from it. Spark is a powerful technology that meets that need. You can, for example, use Spark to perform low latency computations through the use of efficient caching and iterative algorithms; leverage the features of its shell for easy and interactive Data analysis; employ its fast batch processing and low latency features to process your real time data streams and so on. As a result, adoption of Spark is rapidly growing and is replacing Hadoop MapReduce as the technology of choice for big data analytics. This book provides an introduction to Spark and related big-data technologies. It covers Spark core and its add-on libraries, including Spark SQL, Spark Streaming, GraphX, and MLlib. Big Data Analytics with Spark is therefore written for busy professionals who prefer learning a new technology from a consolidated source instead of spending countless hours on the Internet trying to pick bits and pieces from different sources. The book also provides a chapter on Scala, the hottest functional programming language, and the program that underlies Spark. You’ll learn the basics of functional programming in Scala, so that you can write Spark applications in it. What's more, Big Data Analytics with Spark provides an introduction to other big data technologies that are commonly used along with Spark, like Hive, Avro, Kafka and so on. So the book is self-sufficient; all the technologies that you need to know to use Spark are covered. The only thing that you are expected to know is programming in any language. There is a critical shortage of people with big data expertise, so companies are willing to pay top dollar for people with skills in areas like Spark and Scala. So reading this book and absorbing its principles will provide a boost—possibly a big boost—to your career.

Big Data Analytics for Large-Scale Multimedia Search

Big Data Analytics for Large-Scale Multimedia Search
Author :
Publisher : John Wiley & Sons
Total Pages : 372
Release :
ISBN-10 : 9781119376972
ISBN-13 : 1119376971
Rating : 4/5 (72 Downloads)

Synopsis Big Data Analytics for Large-Scale Multimedia Search by : Stefanos Vrochidis

A timely overview of cutting edge technologies for multimedia retrieval with a special emphasis on scalability The amount of multimedia data available every day is enormous and is growing at an exponential rate, creating a great need for new and more efficient approaches for large scale multimedia search. This book addresses that need, covering the area of multimedia retrieval and placing a special emphasis on scalability. It reports the recent works in large scale multimedia search, including research methods and applications, and is structured so that readers with basic knowledge can grasp the core message while still allowing experts and specialists to drill further down into the analytical sections. Big Data Analytics for Large-Scale Multimedia Search covers: representation learning, concept and event-based video search in large collections; big data multimedia mining, large scale video understanding, big multimedia data fusion, large-scale social multimedia analysis, privacy and audiovisual content, data storage and management for big multimedia, large scale multimedia search, multimedia tagging using deep learning, interactive interfaces for big multimedia and medical decision support applications using large multimodal data. Addresses the area of multimedia retrieval and pays close attention to the issue of scalability Presents problem driven techniques with solutions that are demonstrated through realistic case studies and user scenarios Includes tables, illustrations, and figures Offers a Wiley-hosted BCS that features links to open source algorithms, data sets and tools Big Data Analytics for Large-Scale Multimedia Search is an excellent book for academics, industrial researchers, and developers interested in big multimedia data search retrieval. It will also appeal to consultants in computer science problems and professionals in the multimedia industry.

Real-Time Data Analytics for Large Scale Sensor Data

Real-Time Data Analytics for Large Scale Sensor Data
Author :
Publisher : Academic Press
Total Pages : 300
Release :
ISBN-10 : 9780128182420
ISBN-13 : 0128182423
Rating : 4/5 (20 Downloads)

Synopsis Real-Time Data Analytics for Large Scale Sensor Data by : Himansu Das

Real-Time Data Analytics for Large-Scale Sensor Data covers the theory and applications of hardware platforms and architectures, the development of software methods, techniques and tools, applications, governance and adoption strategies for the use of massive sensor data in real-time data analytics. It presents the leading-edge research in the field and identifies future challenges in this fledging research area. The book captures the essence of real-time IoT based solutions that require a multidisciplinary approach for catering to on-the-fly processing, including methods for high performance stream processing, adaptively streaming adjustment, uncertainty handling, latency handling, and more. - Examines IoT applications, the design of real-time intelligent systems, and how to manage the rapid growth of the large volume of sensor data - Discusses intelligent management systems for applications such as healthcare, robotics and environment modeling - Provides a focused approach towards the design and implementation of real-time intelligent systems for the management of sensor data in large-scale environments

Foundations of Data Intensive Applications

Foundations of Data Intensive Applications
Author :
Publisher : John Wiley & Sons
Total Pages : 416
Release :
ISBN-10 : 9781119713012
ISBN-13 : 1119713013
Rating : 4/5 (12 Downloads)

Synopsis Foundations of Data Intensive Applications by : Supun Kamburugamuve

PEEK “UNDER THE HOOD” OF BIG DATA ANALYTICS The world of big data analytics grows ever more complex. And while many people can work superficially with specific frameworks, far fewer understand the fundamental principles of large-scale, distributed data processing systems and how they operate. In Foundations of Data Intensive Applications: Large Scale Data Analytics under the Hood, renowned big-data experts and computer scientists Drs. Supun Kamburugamuve and Saliya Ekanayake deliver a practical guide to applying the principles of big data to software development for optimal performance. The authors discuss foundational components of large-scale data systems and walk readers through the major software design decisions that define performance, application type, and usability. You???ll learn how to recognize problems in your applications resulting in performance and distributed operation issues, diagnose them, and effectively eliminate them by relying on the bedrock big data principles explained within. Moving beyond individual frameworks and APIs for data processing, this book unlocks the theoretical ideas that operate under the hood of every big data processing system. Ideal for data scientists, data architects, dev-ops engineers, and developers, Foundations of Data Intensive Applications: Large Scale Data Analytics under the Hood shows readers how to: Identify the foundations of large-scale, distributed data processing systems Make major software design decisions that optimize performance Diagnose performance problems and distributed operation issues Understand state-of-the-art research in big data Explain and use the major big data frameworks and understand what underpins them Use big data analytics in the real world to solve practical problems

Large Scale and Big Data

Large Scale and Big Data
Author :
Publisher : CRC Press
Total Pages : 640
Release :
ISBN-10 : 9781466581500
ISBN-13 : 1466581506
Rating : 4/5 (00 Downloads)

Synopsis Large Scale and Big Data by : Sherif Sakr

Large Scale and Big Data: Processing and Management provides readers with a central source of reference on the data management techniques currently available for large-scale data processing. Presenting chapters written by leading researchers, academics, and practitioners, it addresses the fundamental challenges associated with Big Data processing tools and techniques across a range of computing environments. The book begins by discussing the basic concepts and tools of large-scale Big Data processing and cloud computing. It also provides an overview of different programming models and cloud-based deployment models. The book’s second section examines the usage of advanced Big Data processing techniques in different domains, including semantic web, graph processing, and stream processing. The third section discusses advanced topics of Big Data processing such as consistency management, privacy, and security. Supplying a comprehensive summary from both the research and applied perspectives, the book covers recent research discoveries and applications, making it an ideal reference for a wide range of audiences, including researchers and academics working on databases, data mining, and web scale data processing. After reading this book, you will gain a fundamental understanding of how to use Big Data-processing tools and techniques effectively across application domains. Coverage includes cloud data management architectures, big data analytics visualization, data management, analytics for vast amounts of unstructured data, clustering, classification, link analysis of big data, scalable data mining, and machine learning techniques.

Big Data Analytics

Big Data Analytics
Author :
Publisher : John Wiley & Sons
Total Pages : 176
Release :
ISBN-10 : 9781118239049
ISBN-13 : 1118239040
Rating : 4/5 (49 Downloads)

Synopsis Big Data Analytics by : Frank J. Ohlhorst

Unique insights to implement big data analytics and reap big returns to your bottom line Focusing on the business and financial value of big data analytics, respected technology journalist Frank J. Ohlhorst shares his insights on the newly emerging field of big data analytics in Big Data Analytics. This breakthrough book demonstrates the importance of analytics, defines the processes, highlights the tangible and intangible values and discusses how you can turn a business liability into actionable material that can be used to redefine markets, improve profits and identify new business opportunities. Reveals big data analytics as the next wave for businesses looking for competitive advantage Takes an in-depth look at the financial value of big data analytics Offers tools and best practices for working with big data Once the domain of large on-line retailers such as eBay and Amazon, big data is now accessible by businesses of all sizes and across industries. From how to mine the data your company collects, to the data that is available on the outside, Big Data Analytics shows how you can leverage big data into a key component in your business's growth strategy.

Handbook of International Large-Scale Assessment

Handbook of International Large-Scale Assessment
Author :
Publisher : CRC Press
Total Pages : 623
Release :
ISBN-10 : 9781439895146
ISBN-13 : 1439895147
Rating : 4/5 (46 Downloads)

Synopsis Handbook of International Large-Scale Assessment by : Leslie Rutkowski

Winner of the 2017 AERA Division D Significant Contribution to Educational Measurement and Research Methodology Award! Technological and statistical advances, along with a strong interest in gathering more information about the state of our educational systems, have made it possible to assess more students, in more countries, more often, and in more subject domains. The Handbook of International Large-Scale Assessment: Background, Technical Issues, and Methods of Data Analysis brings together recognized scholars in the field of ILSA, behavioral statistics, and policy to develop a detailed guide that goes beyond database user manuals. After highlighting the importance of ILSA data to policy and research, the book reviews methodological aspects and features of the studies based on operational considerations, analytics, and reporting. The book then describes methods of interest to advanced graduate students, researchers, and policy analysts who have a good grounding in quantitative methods, but who are not necessarily quantitative methodologists. In addition, it provides a detailed exposition of the technical details behind these assessments, including the test design, the sampling framework, and estimation methods, with a focus on how these issues impact analysis choices.

Frontiers in Massive Data Analysis

Frontiers in Massive Data Analysis
Author :
Publisher : National Academies Press
Total Pages : 191
Release :
ISBN-10 : 9780309287814
ISBN-13 : 0309287812
Rating : 4/5 (14 Downloads)

Synopsis Frontiers in Massive Data Analysis by : National Research Council

Data mining of massive data sets is transforming the way we think about crisis response, marketing, entertainment, cybersecurity and national intelligence. Collections of documents, images, videos, and networks are being thought of not merely as bit strings to be stored, indexed, and retrieved, but as potential sources of discovery and knowledge, requiring sophisticated analysis techniques that go far beyond classical indexing and keyword counting, aiming to find relational and semantic interpretations of the phenomena underlying the data. Frontiers in Massive Data Analysis examines the frontier of analyzing massive amounts of data, whether in a static database or streaming through a system. Data at that scale-terabytes and petabytes-is increasingly common in science (e.g., particle physics, remote sensing, genomics), Internet commerce, business analytics, national security, communications, and elsewhere. The tools that work to infer knowledge from data at smaller scales do not necessarily work, or work well, at such massive scale. New tools, skills, and approaches are necessary, and this report identifies many of them, plus promising research directions to explore. Frontiers in Massive Data Analysis discusses pitfalls in trying to infer knowledge from massive data, and it characterizes seven major classes of computation that are common in the analysis of massive data. Overall, this report illustrates the cross-disciplinary knowledge-from computer science, statistics, machine learning, and application disciplines-that must be brought to bear to make useful inferences from massive data.

Big Data, Big Analytics

Big Data, Big Analytics
Author :
Publisher : John Wiley & Sons
Total Pages : 230
Release :
ISBN-10 : 9781118147603
ISBN-13 : 111814760X
Rating : 4/5 (03 Downloads)

Synopsis Big Data, Big Analytics by : Michael Minelli

Unique prospective on the big data analytics phenomenon for both business and IT professionals The availability of Big Data, low-cost commodity hardware and new information management and analytics software has produced a unique moment in the history of business. The convergence of these trends means that we have the capabilities required to analyze astonishing data sets quickly and cost-effectively for the first time in history. These capabilities are neither theoretical nor trivial. They represent a genuine leap forward and a clear opportunity to realize enormous gains in terms of efficiency, productivity, revenue and profitability. The Age of Big Data is here, and these are truly revolutionary times. This timely book looks at cutting-edge companies supporting an exciting new generation of business analytics. Learn more about the trends in big data and how they are impacting the business world (Risk, Marketing, Healthcare, Financial Services, etc.) Explains this new technology and how companies can use them effectively to gather the data that they need and glean critical insights Explores relevant topics such as data privacy, data visualization, unstructured data, crowd sourcing data scientists, cloud computing for big data, and much more.

Challenges and Opportunities for the Convergence of IoT, Big Data, and Cloud Computing

Challenges and Opportunities for the Convergence of IoT, Big Data, and Cloud Computing
Author :
Publisher : IGI Global
Total Pages : 350
Release :
ISBN-10 : 9781799831136
ISBN-13 : 1799831132
Rating : 4/5 (36 Downloads)

Synopsis Challenges and Opportunities for the Convergence of IoT, Big Data, and Cloud Computing by : Velayutham, Sathiyamoorthi

In today’s market, emerging technologies are continually assisting in common workplace practices as companies and organizations search for innovative ways to solve modern issues that arise. Prevalent applications including internet of things, big data, and cloud computing all have noteworthy benefits, but issues remain when separately integrating them into the professional practices. Significant research is needed on converging these systems and leveraging each of their advantages in order to find solutions to real-time problems that still exist. Challenges and Opportunities for the Convergence of IoT, Big Data, and Cloud Computing is a pivotal reference source that provides vital research on the relation between these technologies and the impact they collectively have in solving real-world challenges. While highlighting topics such as cloud-based analytics, intelligent algorithms, and information security, this publication explores current issues that remain when attempting to implement these systems as well as the specific applications IoT, big data, and cloud computing have in various professional sectors. This book is ideally designed for academicians, researchers, developers, computer scientists, IT professionals, practitioners, scholars, students, and engineers seeking research on the integration of emerging technologies to solve modern societal issues.