Frontiers In Massive Data Analysis
Download Frontiers In Massive Data Analysis full books in PDF, epub, and Kindle. Read online free Frontiers In Massive Data Analysis ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: National Research Council |
Publisher |
: National Academies Press |
Total Pages |
: 191 |
Release |
: 2013-09-03 |
ISBN-10 |
: 9780309287814 |
ISBN-13 |
: 0309287812 |
Rating |
: 4/5 (14 Downloads) |
Synopsis Frontiers in Massive Data Analysis by : National Research Council
Data mining of massive data sets is transforming the way we think about crisis response, marketing, entertainment, cybersecurity and national intelligence. Collections of documents, images, videos, and networks are being thought of not merely as bit strings to be stored, indexed, and retrieved, but as potential sources of discovery and knowledge, requiring sophisticated analysis techniques that go far beyond classical indexing and keyword counting, aiming to find relational and semantic interpretations of the phenomena underlying the data. Frontiers in Massive Data Analysis examines the frontier of analyzing massive amounts of data, whether in a static database or streaming through a system. Data at that scale-terabytes and petabytes-is increasingly common in science (e.g., particle physics, remote sensing, genomics), Internet commerce, business analytics, national security, communications, and elsewhere. The tools that work to infer knowledge from data at smaller scales do not necessarily work, or work well, at such massive scale. New tools, skills, and approaches are necessary, and this report identifies many of them, plus promising research directions to explore. Frontiers in Massive Data Analysis discusses pitfalls in trying to infer knowledge from massive data, and it characterizes seven major classes of computation that are common in the analysis of massive data. Overall, this report illustrates the cross-disciplinary knowledge-from computer science, statistics, machine learning, and application disciplines-that must be brought to bear to make useful inferences from massive data.
Author |
: Siddhartha Bhattacharyya |
Publisher |
: Walter de Gruyter GmbH & Co KG |
Total Pages |
: 194 |
Release |
: 2018-12-17 |
ISBN-10 |
: 9783110551433 |
ISBN-13 |
: 3110551438 |
Rating |
: 4/5 (33 Downloads) |
Synopsis Machine Learning for Big Data Analysis by : Siddhartha Bhattacharyya
This volume comprises six well-versed contributed chapters devoted to report the latest fi ndings on the applications of machine learning for big data analytics. Big data is a term for data sets that are so large or complex that traditional data processing application software is inadequate to deal with them. The possible challenges in this direction include capture, storage, analysis, data curation, search, sharing, transfer, visualization, querying, updating and information privacy. Big data analytics is the process of examining large and varied data sets - i.e., big data - to uncover hidden patterns, unknown correlations, market trends, customer preferences and other useful information that can help organizations make more-informed business decisions. This volume is intended to be used as a reference by undergraduate and post graduate students of the disciplines of computer science, electronics and telecommunication, information science and electrical engineering. THE SERIES: FRONTIERS IN COMPUTATIONAL INTELLIGENCE The series Frontiers In Computational Intelligence is envisioned to provide comprehensive coverage and understanding of cutting edge research in computational intelligence. It intends to augment the scholarly discourse on all topics relating to the advances in artifi cial life and machine learning in the form of metaheuristics, approximate reasoning, and robotics. Latest research fi ndings are coupled with applications to varied domains of engineering and computer sciences. This field is steadily growing especially with the advent of novel machine learning algorithms being applied to different domains of engineering and technology. The series brings together leading researchers that intend to continue to advance the fi eld and create a broad knowledge about the most recent research.
Author |
: Shen Liu |
Publisher |
: Academic Press |
Total Pages |
: 208 |
Release |
: 2015-11-20 |
ISBN-10 |
: 9780081006511 |
ISBN-13 |
: 0081006519 |
Rating |
: 4/5 (11 Downloads) |
Synopsis Computational and Statistical Methods for Analysing Big Data with Applications by : Shen Liu
Due to the scale and complexity of data sets currently being collected in areas such as health, transportation, environmental science, engineering, information technology, business and finance, modern quantitative analysts are seeking improved and appropriate computational and statistical methods to explore, model and draw inferences from big data. This book aims to introduce suitable approaches for such endeavours, providing applications and case studies for the purpose of demonstration. Computational and Statistical Methods for Analysing Big Data with Applications starts with an overview of the era of big data. It then goes onto explain the computational and statistical methods which have been commonly applied in the big data revolution. For each of these methods, an example is provided as a guide to its application. Five case studies are presented next, focusing on computer vision with massive training data, spatial data analysis, advanced experimental design methods for big data, big data in clinical medicine, and analysing data collected from mobile devices, respectively. The book concludes with some final thoughts and suggested areas for future research in big data. - Advanced computational and statistical methodologies for analysing big data are developed - Experimental design methodologies are described and implemented to make the analysis of big data more computationally tractable - Case studies are discussed to demonstrate the implementation of the developed methods - Five high-impact areas of application are studied: computer vision, geosciences, commerce, healthcare and transportation - Computing code/programs are provided where appropriate
Author |
: Michael R. Berthold |
Publisher |
: Springer |
Total Pages |
: 515 |
Release |
: 2007-06-07 |
ISBN-10 |
: 9783540486251 |
ISBN-13 |
: 3540486259 |
Rating |
: 4/5 (51 Downloads) |
Synopsis Intelligent Data Analysis by : Michael R. Berthold
This second and revised edition contains a detailed introduction to the key classes of intelligent data analysis methods. The twelve coherently written chapters by leading experts provide complete coverage of the core issues. The first half of the book is devoted to the discussion of classical statistical issues. The following chapters concentrate on machine learning and artificial intelligence, rule induction methods, neural networks, fuzzy logic, and stochastic search methods. The book concludes with a chapter on visualization and an advanced overview of IDA processes.
Author |
: Yichuan Zhao |
Publisher |
: Springer |
Total Pages |
: 473 |
Release |
: 2018-12-05 |
ISBN-10 |
: 9783319993898 |
ISBN-13 |
: 3319993895 |
Rating |
: 4/5 (98 Downloads) |
Synopsis New Frontiers of Biostatistics and Bioinformatics by : Yichuan Zhao
This book is comprised of presentations delivered at the 5th Workshop on Biostatistics and Bioinformatics held in Atlanta on May 5-7, 2017. Featuring twenty-two selected papers from the workshop, this book showcases the most current advances in the field, presenting new methods, theories, and case applications at the frontiers of biostatistics, bioinformatics, and interdisciplinary areas. Biostatistics and bioinformatics have been playing a key role in statistics and other scientific research fields in recent years. The goal of the 5th Workshop on Biostatistics and Bioinformatics was to stimulate research, foster interaction among researchers in field, and offer opportunities for learning and facilitating research collaborations in the era of big data. The resulting volume offers timely insights for researchers, students, and industry practitioners.
Author |
: Somnath Datta |
Publisher |
: Springer |
Total Pages |
: 0 |
Release |
: 2016-09-17 |
ISBN-10 |
: 3319379054 |
ISBN-13 |
: 9783319379050 |
Rating |
: 4/5 (54 Downloads) |
Synopsis Statistical Analysis of Next Generation Sequencing Data by : Somnath Datta
Next Generation Sequencing (NGS) is the latest high throughput technology to revolutionize genomic research. NGS generates massive genomic datasets that play a key role in the big data phenomenon that surrounds us today. To extract signals from high-dimensional NGS data and make valid statistical inferences and predictions, novel data analytic and statistical techniques are needed. This book contains 20 chapters written by prominent statisticians working with NGS data. The topics range from basic preprocessing and analysis with NGS data to more complex genomic applications such as copy number variation and isoform expression detection. Research statisticians who want to learn about this growing and exciting area will find this book useful. In addition, many chapters from this book could be included in graduate-level classes in statistical bioinformatics for training future biostatisticians who will be expected to deal with genomic data in basic biomedical research, genomic clinical trials and personalized medicine. About the editors: Somnath Datta is Professor and Vice Chair of Bioinformatics and Biostatistics at the University of Louisville. He is Fellow of the American Statistical Association, Fellow of the Institute of Mathematical Statistics and Elected Member of the International Statistical Institute. He has contributed to numerous research areas in Statistics, Biostatistics and Bioinformatics. Dan Nettleton is Professor and Laurence H. Baker Endowed Chair of Biological Statistics in the Department of Statistics at Iowa State University. He is Fellow of the American Statistical Association and has published research on a variety of topics in statistics, biology and bioinformatics.
Author |
: Vasudha Bhatnagar |
Publisher |
: Springer |
Total Pages |
: 208 |
Release |
: 2013-12-06 |
ISBN-10 |
: 9783319036892 |
ISBN-13 |
: 3319036890 |
Rating |
: 4/5 (92 Downloads) |
Synopsis Big Data Analytics by : Vasudha Bhatnagar
This book constitutes the thoroughly refereed conference proceedings of the Second International Conference on Big Data Analytics, BDA 2013, held in Mysore, India, in December 2013. The 13 revised full papers were carefully reviewed and selected from 49 submissions and cover topics on mining social media data, perspectives on big data analysis, graph analysis, big data in practice.
Author |
: Saumyadipta Pyne |
Publisher |
: Springer |
Total Pages |
: 278 |
Release |
: 2016-10-12 |
ISBN-10 |
: 9788132236283 |
ISBN-13 |
: 8132236289 |
Rating |
: 4/5 (83 Downloads) |
Synopsis Big Data Analytics by : Saumyadipta Pyne
This book has a collection of articles written by Big Data experts to describe some of the cutting-edge methods and applications from their respective areas of interest, and provides the reader with a detailed overview of the field of Big Data Analytics as it is practiced today. The chapters cover technical aspects of key areas that generate and use Big Data such as management and finance; medicine and healthcare; genome, cytome and microbiome; graphs and networks; Internet of Things; Big Data standards; bench-marking of systems; and others. In addition to different applications, key algorithmic approaches such as graph partitioning, clustering and finite mixture modelling of high-dimensional data are also covered. The varied collection of themes in this volume introduces the reader to the richness of the emerging field of Big Data Analytics.
Author |
: Sun, Zhaohao |
Publisher |
: IGI Global |
Total Pages |
: 357 |
Release |
: 2019-02-22 |
ISBN-10 |
: 9781522572787 |
ISBN-13 |
: 1522572783 |
Rating |
: 4/5 (87 Downloads) |
Synopsis Managerial Perspectives on Intelligent Big Data Analytics by : Sun, Zhaohao
Big data, analytics, and artificial intelligence are revolutionizing work, management, and lifestyles and are becoming disruptive technologies for healthcare, e-commerce, and web services. However, many fundamental, technological, and managerial issues for developing and applying intelligent big data analytics in these fields have yet to be addressed. Managerial Perspectives on Intelligent Big Data Analytics is a collection of innovative research that discusses the integration and application of artificial intelligence, business intelligence, digital transformation, and intelligent big data analytics from a perspective of computing, service, and management. While highlighting topics including e-commerce, machine learning, and fuzzy logic, this book is ideally designed for students, government officials, data scientists, managers, consultants, analysts, IT specialists, academicians, researchers, and industry professionals in fields that include big data, artificial intelligence, computing, and commerce.
Author |
: Rio Yokota |
Publisher |
: Springer |
Total Pages |
: 301 |
Release |
: 2018-03-20 |
ISBN-10 |
: 9783319699530 |
ISBN-13 |
: 3319699539 |
Rating |
: 4/5 (30 Downloads) |
Synopsis Supercomputing Frontiers by : Rio Yokota
It constitutes the refereed proceedings of the 4th Asian Supercomputing Conference, SCFA 2018, held in Singapore in March 2018. Supercomputing Frontiers will be rebranded as Supercomputing Frontiers Asia (SCFA), which serves as the technical programme for SCA18. The technical programme for SCA18 consists of four tracks: Application, Algorithms & Libraries Programming System Software Architecture, Network/Communications & Management Data, Storage & Visualisation The 20 papers presented in this volume were carefully reviewed nd selected from 60 submissions.