Large Deviations Techniques and Applications

Large Deviations Techniques and Applications
Author :
Publisher : Springer Science & Business Media
Total Pages : 409
Release :
ISBN-10 : 9783642033117
ISBN-13 : 3642033113
Rating : 4/5 (17 Downloads)

Synopsis Large Deviations Techniques and Applications by : Amir Dembo

Large deviation estimates have proved to be the crucial tool required to handle many questions in statistics, engineering, statistial mechanics, and applied probability. Amir Dembo and Ofer Zeitouni, two of the leading researchers in the field, provide an introduction to the theory of large deviations and applications at a level suitable for graduate students. The mathematics is rigorous and the applications come from a wide range of areas, including electrical engineering and DNA sequences. The second edition, printed in 1998, included new material on concentration inequalities and the metric and weak convergence approaches to large deviations. General statements and applications were sharpened, new exercises added, and the bibliography updated. The present soft cover edition is a corrected printing of the 1998 edition.

An Introduction to Markov Processes

An Introduction to Markov Processes
Author :
Publisher : Springer Science & Business Media
Total Pages : 196
Release :
ISBN-10 : 3540234519
ISBN-13 : 9783540234517
Rating : 4/5 (19 Downloads)

Synopsis An Introduction to Markov Processes by : Daniel W. Stroock

Provides a more accessible introduction than other books on Markov processes by emphasizing the structure of the subject and avoiding sophisticated measure theory Leads the reader to a rigorous understanding of basic theory

A Course on Large Deviations with an Introduction to Gibbs Measures

A Course on Large Deviations with an Introduction to Gibbs Measures
Author :
Publisher : American Mathematical Soc.
Total Pages : 335
Release :
ISBN-10 : 9780821875780
ISBN-13 : 0821875787
Rating : 4/5 (80 Downloads)

Synopsis A Course on Large Deviations with an Introduction to Gibbs Measures by : Firas Rassoul-Agha

This is an introductory course on the methods of computing asymptotics of probabilities of rare events: the theory of large deviations. The book combines large deviation theory with basic statistical mechanics, namely Gibbs measures with their variational characterization and the phase transition of the Ising model, in a text intended for a one semester or quarter course. The book begins with a straightforward approach to the key ideas and results of large deviation theory in the context of independent identically distributed random variables. This includes Cramér's theorem, relative entropy, Sanov's theorem, process level large deviations, convex duality, and change of measure arguments. Dependence is introduced through the interactions potentials of equilibrium statistical mechanics. The phase transition of the Ising model is proved in two different ways: first in the classical way with the Peierls argument, Dobrushin's uniqueness condition, and correlation inequalities and then a second time through the percolation approach. Beyond the large deviations of independent variables and Gibbs measures, later parts of the book treat large deviations of Markov chains, the Gärtner-Ellis theorem, and a large deviation theorem of Baxter and Jain that is then applied to a nonstationary process and a random walk in a dynamical random environment. The book has been used with students from mathematics, statistics, engineering, and the sciences and has been written for a broad audience with advanced technical training. Appendixes review basic material from analysis and probability theory and also prove some of the technical results used in the text.

Large Deviations

Large Deviations
Author :
Publisher : American Mathematical Soc.
Total Pages : 164
Release :
ISBN-10 : 0821844350
ISBN-13 : 9780821844359
Rating : 4/5 (50 Downloads)

Synopsis Large Deviations by : Frank Hollander

Offers an introduction to large deviations. This book is divided into two parts: theory and applications. It presents basic large deviation theorems for i i d sequences, Markov sequences, and sequences with moderate dependence. It also includes an outline of general definitions and theorems.

Large Deviations in Physics

Large Deviations in Physics
Author :
Publisher : Springer
Total Pages : 323
Release :
ISBN-10 : 9783642542510
ISBN-13 : 3642542514
Rating : 4/5 (10 Downloads)

Synopsis Large Deviations in Physics by : Angelo Vulpiani

This book reviews the basic ideas of the Law of Large Numbers with its consequences to the deterministic world and the issue of ergodicity. Applications of Large Deviations and their outcomes to Physics are surveyed. The book covers topics encompassing ergodicity and its breaking and the modern applications of Large deviations to equilibrium and non-equilibrium statistical physics, disordered and chaotic systems, and turbulence.

Large Deviations for Random Graphs

Large Deviations for Random Graphs
Author :
Publisher : Springer
Total Pages : 175
Release :
ISBN-10 : 9783319658162
ISBN-13 : 3319658166
Rating : 4/5 (62 Downloads)

Synopsis Large Deviations for Random Graphs by : Sourav Chatterjee

This book addresses the emerging body of literature on the study of rare events in random graphs and networks. For example, what does a random graph look like if by chance it has far more triangles than expected? Until recently, probability theory offered no tools to help answer such questions. Important advances have been made in the last few years, employing tools from the newly developed theory of graph limits. This work represents the first book-length treatment of this area, while also exploring the related area of exponential random graphs. All required results from analysis, combinatorics, graph theory and classical large deviations theory are developed from scratch, making the text self-contained and doing away with the need to look up external references. Further, the book is written in a format and style that are accessible for beginning graduate students in mathematics and statistics.

Large Deviations and Applications

Large Deviations and Applications
Author :
Publisher : SIAM
Total Pages : 74
Release :
ISBN-10 : 9780898711899
ISBN-13 : 0898711894
Rating : 4/5 (99 Downloads)

Synopsis Large Deviations and Applications by : S. R. S. Varadhan

Many situations exist in which solutions to problems are represented as function space integrals. Such representations can be used to study the qualitative properties of the solutions and to evaluate them numerically using Monte Carlo methods. The emphasis in this book is on the behavior of solutions in special situations when certain parameters get large or small.

A Weak Convergence Approach to the Theory of Large Deviations

A Weak Convergence Approach to the Theory of Large Deviations
Author :
Publisher : John Wiley & Sons
Total Pages : 506
Release :
ISBN-10 : 9781118165898
ISBN-13 : 1118165896
Rating : 4/5 (98 Downloads)

Synopsis A Weak Convergence Approach to the Theory of Large Deviations by : Paul Dupuis

Applies the well-developed tools of the theory of weak convergenceof probability measures to large deviation analysis--a consistentnew approach The theory of large deviations, one of the most dynamic topics inprobability today, studies rare events in stochastic systems. Thenonlinear nature of the theory contributes both to its richness anddifficulty. This innovative text demonstrates how to employ thewell-established linear techniques of weak convergence theory toprove large deviation results. Beginning with a step-by-stepdevelopment of the approach, the book skillfully guides readersthrough models of increasing complexity covering a wide variety ofrandom variable-level and process-level problems. Representationformulas for large deviation-type expectations are a key tool andare developed systematically for discrete-time problems. Accessible to anyone who has a knowledge of measure theory andmeasure-theoretic probability, A Weak Convergence Approach to theTheory of Large Deviations is important reading for both studentsand researchers.

Entropy, Large Deviations, and Statistical Mechanics

Entropy, Large Deviations, and Statistical Mechanics
Author :
Publisher : Springer Science & Business Media
Total Pages : 372
Release :
ISBN-10 : 9781461385332
ISBN-13 : 1461385334
Rating : 4/5 (32 Downloads)

Synopsis Entropy, Large Deviations, and Statistical Mechanics by : Richard.S. Ellis

This book has two main topics: large deviations and equilibrium statistical mechanics. I hope to convince the reader that these topics have many points of contact and that in being treated together, they enrich each other. Entropy, in its various guises, is their common core. The large deviation theory which is developed in this book focuses upon convergence properties of certain stochastic systems. An elementary example is the weak law of large numbers. For each positive e, P{ISn/nl 2: e} con verges to zero as n --+ 00, where Sn is the nth partial sum of indepen dent identically distributed random variables with zero mean. Large deviation theory shows that if the random variables are exponentially bounded, then the probabilities converge to zero exponentially fast as n --+ 00. The exponen tial decay allows one to prove the stronger property of almost sure conver gence (Sn/n --+ 0 a.s.). This example will be generalized extensively in the book. We will treat a large class of stochastic systems which involve both indepen dent and dependent random variables and which have the following features: probabilities converge to zero exponentially fast as the size of the system increases; the exponential decay leads to strong convergence properties of the system. The most fascinating aspect of the theory is that the exponential decay rates are computable in terms of entropy functions. This identification between entropy and decay rates of large deviation probabilities enhances the theory significantly.