Knots And Surfaces
Download Knots And Surfaces full books in PDF, epub, and Kindle. Read online free Knots And Surfaces ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: David W. Farmer |
Publisher |
: American Mathematical Soc. |
Total Pages |
: 111 |
Release |
: 1996 |
ISBN-10 |
: 9780821804513 |
ISBN-13 |
: 0821804510 |
Rating |
: 4/5 (13 Downloads) |
Synopsis Knots and Surfaces by : David W. Farmer
In most mathematics textbooks, the most exciting part of mathematics - the process of invention and discovery - is completely hidden from the student. The aim of Knots and Surfaces is to change all that. Knots and Surfaces guides the reader through Euler's formula, one and two-sided surfaces, and knot theory using games and examples. By means of a series of carefully selected tasks, this book leads the reader on to discover some real mathematics. There are no formulas to memorize; no procedures to follow. This book is a guide to the mathematics - it starts you in the right direction and brings you back if you stray too far. Discovery is left to you. This book is aimed at undergraduates and those with little background knowledge of mathematics.
Author |
: N. D. Gilbert |
Publisher |
: Oxford University Press, UK |
Total Pages |
: 285 |
Release |
: 1994-12-01 |
ISBN-10 |
: 9780191591907 |
ISBN-13 |
: 0191591904 |
Rating |
: 4/5 (07 Downloads) |
Synopsis Knots and Surfaces by : N. D. Gilbert
Completely up-to-date, illustrated throughout, and written in an accessible style, Knots and Surfaces is an account of the mathematical theory of knots and its interaction with related fields. This is an area of intense research activity, and this text provides the advanced undergraduate with a superb introduction to this exciting field. Beginning with a simple diagrammatic approach, the book proceeds through recent advances to areas of current research. Topics including topological spaces, surfaces, the fundamental group, graphs, free groups, and group presentations combine to form a coherent and highly developed theory with which to explore and explain the accessible and intuitive problems of knots and surfaces. - ;The main theme of this book is the mathematical theory of knots and its interaction with the theory of surfaces and of group presentations. Beginning with a simple diagrammatic approach to the study of knots, reflecting the artistic and geometric appeal of interlaced forms, Knots and Surfaces takes the reader through recent advances in our understanding to areas of current research. Topics included are straightforward introductions to topological spaces, surfaces, the fundamental group, graphs, free groups, and group presentations. These topics combine into a coherent and highly developed theory to explore and explain the accessible and intuitive problems of knots and surfaces. Both as an introduction to several areas of prime importance to the development of pure mathematics today, and as an account of pure mathematics in action in an unusual context, this book presents novel challenges to students and other interested readers. -
Author |
: Colin Conrad Adams |
Publisher |
: American Mathematical Soc. |
Total Pages |
: 330 |
Release |
: 2004 |
ISBN-10 |
: 9780821836781 |
ISBN-13 |
: 0821836781 |
Rating |
: 4/5 (81 Downloads) |
Synopsis The Knot Book by : Colin Conrad Adams
Knots are familiar objects. Yet the mathematical theory of knots quickly leads to deep results in topology and geometry. This work offers an introduction to this theory, starting with our understanding of knots. It presents the applications of knot theory to modern chemistry, biology and physics.
Author |
: Seiichi Kamada |
Publisher |
: Springer |
Total Pages |
: 215 |
Release |
: 2017-03-28 |
ISBN-10 |
: 9789811040917 |
ISBN-13 |
: 9811040915 |
Rating |
: 4/5 (17 Downloads) |
Synopsis Surface-Knots in 4-Space by : Seiichi Kamada
This introductory volume provides the basics of surface-knots and related topics, not only for researchers in these areas but also for graduate students and researchers who are not familiar with the field.Knot theory is one of the most active research fields in modern mathematics. Knots and links are closed curves (one-dimensional manifolds) in Euclidean 3-space, and they are related to braids and 3-manifolds. These notions are generalized into higher dimensions. Surface-knots or surface-links are closed surfaces (two-dimensional manifolds) in Euclidean 4-space, which are related to two-dimensional braids and 4-manifolds. Surface-knot theory treats not only closed surfaces but also surfaces with boundaries in 4-manifolds. For example, knot concordance and knot cobordism, which are also important objects in knot theory, are surfaces in the product space of the 3-sphere and the interval.Included in this book are basics of surface-knots and the related topics of classical knots, the motion picture method, surface diagrams, handle surgeries, ribbon surface-knots, spinning construction, knot concordance and 4-genus, quandles and their homology theory, and two-dimensional braids.
Author |
: Joanna A. Ellis-Monaghan |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 149 |
Release |
: 2013-06-28 |
ISBN-10 |
: 9781461469711 |
ISBN-13 |
: 1461469716 |
Rating |
: 4/5 (11 Downloads) |
Synopsis Graphs on Surfaces by : Joanna A. Ellis-Monaghan
Graphs on Surfaces: Dualities, Polynomials, and Knots offers an accessible and comprehensive treatment of recent developments on generalized duals of graphs on surfaces, and their applications. The authors illustrate the interdependency between duality, medial graphs and knots; how this interdependency is reflected in algebraic invariants of graphs and knots; and how it can be exploited to solve problems in graph and knot theory. Taking a constructive approach, the authors emphasize how generalized duals and related ideas arise by localizing classical constructions, such as geometric duals and Tait graphs, and then removing artificial restrictions in these constructions to obtain full extensions of them to embedded graphs. The authors demonstrate the benefits of these generalizations to embedded graphs in chapters describing their applications to graph polynomials and knots. Graphs on Surfaces: Dualities, Polynomials, and Knots also provides a self-contained introduction to graphs on surfaces, generalized duals, topological graph polynomials, and knot polynomials that is accessible both to graph theorists and to knot theorists. Directed at those with some familiarity with basic graph theory and knot theory, this book is appropriate for graduate students and researchers in either area. Because the area is advancing so rapidly, the authors give a comprehensive overview of the topic and include a robust bibliography, aiming to provide the reader with the necessary foundations to stay abreast of the field. The reader will come away from the text convinced of advantages of considering these higher genus analogues of constructions of plane and abstract graphs, and with a good understanding of how they arise.
Author |
: Francis Bonahon |
Publisher |
: American Mathematical Soc. |
Total Pages |
: 403 |
Release |
: 2009-07-14 |
ISBN-10 |
: 9780821848166 |
ISBN-13 |
: 082184816X |
Rating |
: 4/5 (66 Downloads) |
Synopsis Low-Dimensional Geometry by : Francis Bonahon
The study of 3-dimensional spaces brings together elements from several areas of mathematics. The most notable are topology and geometry, but elements of number theory and analysis also make appearances. In the past 30 years, there have been striking developments in the mathematics of 3-dimensional manifolds. This book aims to introduce undergraduate students to some of these important developments. Low-Dimensional Geometry starts at a relatively elementary level, and its early chapters can be used as a brief introduction to hyperbolic geometry. However, the ultimate goal is to describe the very recently completed geometrization program for 3-dimensional manifolds. The journey to reach this goal emphasizes examples and concrete constructions as an introduction to more general statements. This includes the tessellations associated to the process of gluing together the sides of a polygon. Bending some of these tessellations provides a natural introduction to 3-dimensional hyperbolic geometry and to the theory of kleinian groups, and it eventually leads to a discussion of the geometrization theorems for knot complements and 3-dimensional manifolds. This book is illustrated with many pictures, as the author intended to share his own enthusiasm for the beauty of some of the mathematical objects involved. However, it also emphasizes mathematical rigor and, with the exception of the most recent research breakthroughs, its constructions and statements are carefully justified.
Author |
: Stephan C. Carlson |
Publisher |
: John Wiley & Sons |
Total Pages |
: 178 |
Release |
: 2001-01-10 |
ISBN-10 |
: UOM:39015049686283 |
ISBN-13 |
: |
Rating |
: 4/5 (83 Downloads) |
Synopsis Topology of Surfaces, Knots, and Manifolds by : Stephan C. Carlson
This textbook contains ideas and problems involving curves, surfaces, and knots, which make up the core of topology. Carlson (mathematics, Rose-Hulman Institute of Technology) introduces some basic ideas and problems concerning manifolds, especially one- and two- dimensional manifolds. A sampling of topics includes classification of compact surfaces, putting more structure on the surfaces, graphs and topology, and knot theory. It is assumed that the reader has a background in calculus. Annotation copyrighted by Book News Inc., Portland, OR.
Author |
: J. Scott Carter |
Publisher |
: World Scientific |
Total Pages |
: 344 |
Release |
: 1995 |
ISBN-10 |
: 9810220669 |
ISBN-13 |
: 9789810220662 |
Rating |
: 4/5 (69 Downloads) |
Synopsis How Surfaces Intersect in Space by : J. Scott Carter
This marvelous book of pictures illustrates the fundamental concepts of geometric topology in a way that is very friendly to the reader. It will be of value to anyone who wants to understand the subject by way of examples. Undergraduates, beginning graduate students, and non-professionals will profit from reading the book and from just looking at the pictures.
Author |
: Erica Flapan |
Publisher |
: American Mathematical Soc. |
Total Pages |
: 406 |
Release |
: 2015-12-22 |
ISBN-10 |
: 9781470425357 |
ISBN-13 |
: 1470425351 |
Rating |
: 4/5 (57 Downloads) |
Synopsis Knots, Molecules, and the Universe by : Erica Flapan
This book is an elementary introduction to geometric topology and its applications to chemistry, molecular biology, and cosmology. It does not assume any mathematical or scientific background, sophistication, or even motivation to study mathematics. It is meant to be fun and engaging while drawing students in to learn about fundamental topological and geometric ideas. Though the book can be read and enjoyed by nonmathematicians, college students, or even eager high school students, it is intended to be used as an undergraduate textbook. The book is divided into three parts corresponding to the three areas referred to in the title. Part 1 develops techniques that enable two- and three-dimensional creatures to visualize possible shapes for their universe and to use topological and geometric properties to distinguish one such space from another. Part 2 is an introduction to knot theory with an emphasis on invariants. Part 3 presents applications of topology and geometry to molecular symmetries, DNA, and proteins. Each chapter ends with exercises that allow for better understanding of the material. The style of the book is informal and lively. Though all of the definitions and theorems are explicitly stated, they are given in an intuitive rather than a rigorous form, with several hundreds of figures illustrating the exposition. This allows students to develop intuition about topology and geometry without getting bogged down in technical details.
Author |
: David Gay |
Publisher |
: Elsevier |
Total Pages |
: 332 |
Release |
: 2013-12-04 |
ISBN-10 |
: 9780124166400 |
ISBN-13 |
: 0124166407 |
Rating |
: 4/5 (00 Downloads) |
Synopsis Explorations in Topology by : David Gay
Explorations in Topology, Second Edition, provides students a rich experience with low-dimensional topology (map coloring, surfaces, and knots), enhances their geometrical and topological intuition, empowers them with new approaches to solving problems, and provides them with experiences that will help them make sense of future, more formal topology courses. The book's innovative story-line style models the problem-solving process, presents the development of concepts in a natural way, and engages students in meaningful encounters with the material. The updated end-of-chapter investigations provide opportunities to work on many open-ended, non-routine problems and, through a modified "Moore method," to make conjectures from which theorems emerge. The revised end-of-chapter notes provide historical background to the chapter's ideas, introduce standard terminology, and make connections with mainstream mathematics. The final chapter of projects provides ideas for continued research. Explorations in Topology, Second Edition, enhances upper division courses and is a valuable reference for all levels of students and researchers working in topology. - Students begin to solve substantial problems from the start - Ideas unfold through the context of a storyline, and students become actively involved - The text models the problem-solving process, presents the development of concepts in a natural way, and helps the reader engage with the material