Knot Theory And Its Applications
Download Knot Theory And Its Applications full books in PDF, epub, and Kindle. Read online free Knot Theory And Its Applications ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Kunio Murasugi |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 348 |
Release |
: 2009-12-29 |
ISBN-10 |
: 9780817647193 |
ISBN-13 |
: 0817647198 |
Rating |
: 4/5 (93 Downloads) |
Synopsis Knot Theory and Its Applications by : Kunio Murasugi
This book introduces the study of knots, providing insights into recent applications in DNA research and graph theory. It sets forth fundamental facts such as knot diagrams, braid representations, Seifert surfaces, tangles, and Alexander polynomials. It also covers more recent developments and special topics, such as chord diagrams and covering spaces. The author avoids advanced mathematical terminology and intricate techniques in algebraic topology and group theory. Numerous diagrams and exercises help readers understand and apply the theory. Each chapter includes a supplement with interesting historical and mathematical comments.
Author |
: Colin Conrad Adams |
Publisher |
: American Mathematical Soc. |
Total Pages |
: 330 |
Release |
: 2004 |
ISBN-10 |
: 9780821836781 |
ISBN-13 |
: 0821836781 |
Rating |
: 4/5 (81 Downloads) |
Synopsis The Knot Book by : Colin Conrad Adams
Knots are familiar objects. Yet the mathematical theory of knots quickly leads to deep results in topology and geometry. This work offers an introduction to this theory, starting with our understanding of knots. It presents the applications of knot theory to modern chemistry, biology and physics.
Author |
: Louis H. Kauffman |
Publisher |
: World Scientific |
Total Pages |
: 577 |
Release |
: 2012 |
ISBN-10 |
: 9789814313001 |
ISBN-13 |
: 9814313009 |
Rating |
: 4/5 (01 Downloads) |
Synopsis Introductory Lectures on Knot Theory by : Louis H. Kauffman
More recently, Khovanov introduced link homology as a generalization of the Jones polynomial to homology of chain complexes and Ozsvath and Szabo developed Heegaard-Floer homology, that lifts the Alexander polynomial. These two significantly different theories are closely related and the dependencies are the object of intensive study. These ideas mark the beginning of a new era in knot theory that includes relationships with four-dimensional problems and the creation of new forms of algebraic topology relevant to knot theory. The theory of skein modules is an older development also having its roots in Jones discovery. Another significant and related development is the theory of virtual knots originated independently by Kauffman and by Goussarov Polyak and Viro in the '90s. All these topics and their relationships are the subject of the survey papers in this book.
Author |
: Markus Banagl |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 363 |
Release |
: 2010-11-25 |
ISBN-10 |
: 9783642156373 |
ISBN-13 |
: 3642156371 |
Rating |
: 4/5 (73 Downloads) |
Synopsis The Mathematics of Knots by : Markus Banagl
The present volume grew out of the Heidelberg Knot Theory Semester, organized by the editors in winter 2008/09 at Heidelberg University. The contributed papers bring the reader up to date on the currently most actively pursued areas of mathematical knot theory and its applications in mathematical physics and cell biology. Both original research and survey articles are presented; numerous illustrations support the text. The book will be of great interest to researchers in topology, geometry, and mathematical physics, graduate students specializing in knot theory, and cell biologists interested in the topology of DNA strands.
Author |
: Louis H. Kauffman |
Publisher |
: World Scientific |
Total Pages |
: 502 |
Release |
: 1995 |
ISBN-10 |
: 9810220049 |
ISBN-13 |
: 9789810220044 |
Rating |
: 4/5 (49 Downloads) |
Synopsis Knots and Applications by : Louis H. Kauffman
This volume is a collection of research papers devoted to the study of relationships between knot theory and the foundations of mathematics, physics, chemistry, biology and psychology. Included are reprints of the work of Lord Kelvin (Sir William Thomson) on the 19th century theory of vortex atoms, reprints of modern papers on knotted flux in physics and in fluid dynamics and knotted wormholes in general relativity. It also includes papers on Witten's approach to knots via quantum field theory and applications of this approach to quantum gravity and the Ising model in three dimensions. Other papers discuss the topology of RNA folding in relation to invariants of graphs and Vassiliev invariants, the entanglement structures of polymers, the synthesis of molecular Mobius strips and knotted molecules. The book begins with an article on the applications of knot theory to the foundations of mathematics and ends with an article on topology and visual perception. This volume will be of immense interest to all workers interested in new possibilities in the uses of knots and knot theory.
Author |
: W.B.Raymond Lickorish |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 213 |
Release |
: 2012-12-06 |
ISBN-10 |
: 9781461206910 |
ISBN-13 |
: 146120691X |
Rating |
: 4/5 (10 Downloads) |
Synopsis An Introduction to Knot Theory by : W.B.Raymond Lickorish
A selection of topics which graduate students have found to be a successful introduction to the field, employing three distinct techniques: geometric topology manoeuvres, combinatorics, and algebraic topology. Each topic is developed until significant results are achieved and each chapter ends with exercises and brief accounts of the latest research. What may reasonably be referred to as knot theory has expanded enormously over the last decade and, while the author describes important discoveries throughout the twentieth century, the latest discoveries such as quantum invariants of 3-manifolds as well as generalisations and applications of the Jones polynomial are also included, presented in an easily intelligible style. Readers are assumed to have knowledge of the basic ideas of the fundamental group and simple homology theory, although explanations throughout the text are numerous and well-done. Written by an internationally known expert in the field, this will appeal to graduate students, mathematicians and physicists with a mathematical background wishing to gain new insights in this area.
Author |
: Jorge Alberto Calvo |
Publisher |
: World Scientific |
Total Pages |
: 642 |
Release |
: 2005 |
ISBN-10 |
: 9789812703460 |
ISBN-13 |
: 9812703462 |
Rating |
: 4/5 (60 Downloads) |
Synopsis Physical and Numerical Models in Knot Theory by : Jorge Alberto Calvo
The physical properties of knotted and linked configurations in space have long been of interest to mathematicians. More recently, these properties have become significant to biologists, physicists, and engineers among others. Their depth of importance and breadth of application are now widely appreciated and valuable progress continues to be made each year. This volume presents several contributions from researchers using computers to study problems that would otherwise be intractable. While computations have long been used to analyze problems, formulate conjectures, and search for special structures in knot theory, increased computational power has made them a staple in many facets of the field. The volume also includes contributions concentrating on models researchers use to understand knotting, linking, and entanglement in physical and biological systems. Topics include properties of knot invariants, knot tabulation, studies of hyperbolic structures, knot energies, the exploration of spaces of knots, knotted umbilical cords, studies of knots in DNA and proteins, and the structure of tight knots. Together, the chapters explore four major themes: physical knot theory, knot theory in the life sciences, computational knot theory, and geometric knot theory.
Author |
: Akio Kawauchi |
Publisher |
: Birkhäuser |
Total Pages |
: 431 |
Release |
: 2012-12-06 |
ISBN-10 |
: 9783034892278 |
ISBN-13 |
: 3034892276 |
Rating |
: 4/5 (78 Downloads) |
Synopsis A Survey of Knot Theory by : Akio Kawauchi
Knot theory is a rapidly developing field of research with many applications, not only for mathematics. The present volume, written by a well-known specialist, gives a complete survey of this theory from its very beginnings to today's most recent research results. An indispensable book for everyone concerned with knot theory.
Author |
: William Menasco |
Publisher |
: Elsevier |
Total Pages |
: 502 |
Release |
: 2005-08-02 |
ISBN-10 |
: 0080459544 |
ISBN-13 |
: 9780080459547 |
Rating |
: 4/5 (44 Downloads) |
Synopsis Handbook of Knot Theory by : William Menasco
This book is a survey of current topics in the mathematical theory of knots. For a mathematician, a knot is a closed loop in 3-dimensional space: imagine knotting an extension cord and then closing it up by inserting its plug into its outlet. Knot theory is of central importance in pure and applied mathematics, as it stands at a crossroads of topology, combinatorics, algebra, mathematical physics and biochemistry. * Survey of mathematical knot theory * Articles by leading world authorities * Clear exposition, not over-technical * Accessible to readers with undergraduate background in mathematics
Author |
: Jessica S. Purcell |
Publisher |
: American Mathematical Soc. |
Total Pages |
: 392 |
Release |
: 2020-10-06 |
ISBN-10 |
: 9781470454999 |
ISBN-13 |
: 1470454998 |
Rating |
: 4/5 (99 Downloads) |
Synopsis Hyperbolic Knot Theory by : Jessica S. Purcell
This book provides an introduction to hyperbolic geometry in dimension three, with motivation and applications arising from knot theory. Hyperbolic geometry was first used as a tool to study knots by Riley and then Thurston in the 1970s. By the 1980s, combining work of Mostow and Prasad with Gordon and Luecke, it was known that a hyperbolic structure on a knot complement in the 3-sphere gives a complete knot invariant. However, it remains a difficult problem to relate the hyperbolic geometry of a knot to other invariants arising from knot theory. In particular, it is difficult to determine hyperbolic geometric information from a knot diagram, which is classically used to describe a knot. This textbook provides background on these problems, and tools to determine hyperbolic information on knots. It also includes results and state-of-the art techniques on hyperbolic geometry and knot theory to date. The book was written to be interactive, with many examples and exercises. Some important results are left to guided exercises. The level is appropriate for graduate students with a basic background in algebraic topology, particularly fundamental groups and covering spaces. Some experience with some differential topology and Riemannian geometry will also be helpful.