Kinematics of Human Motion

Kinematics of Human Motion
Author :
Publisher : Human Kinetics
Total Pages : 436
Release :
ISBN-10 : 0880116765
ISBN-13 : 9780880116763
Rating : 4/5 (65 Downloads)

Synopsis Kinematics of Human Motion by : Vladimir M. Zatsiorsky

The first of a series of textbooks for one-semester courses for students of human movement science, exercise and sport science, biomechanics, and related subjects. Assumes a knowledge of calculus and matrix algebra. Describes how to study human body position and displacement without regard to time, velocity, or acceleration, then adds those factors back in to examine differential kinematics. Includes review questions and a glossary without pronunciation. Annotation copyrighted by Book News, Inc., Portland, OR

Kinetics of Human Motion

Kinetics of Human Motion
Author :
Publisher : Human Kinetics
Total Pages : 680
Release :
ISBN-10 : 0736037780
ISBN-13 : 9780736037785
Rating : 4/5 (80 Downloads)

Synopsis Kinetics of Human Motion by : Vladimir M. Zatsiorsky

This book focuses on the examination of forces that create entire body motion.

Kinesiology

Kinesiology
Author :
Publisher : McGraw-Hill Higher Education
Total Pages : 573
Release :
ISBN-10 : 9780077433253
ISBN-13 : 0077433254
Rating : 4/5 (53 Downloads)

Synopsis Kinesiology by : Nancy Hamilton

Examines human motion through the integrated presentation of anatomy and biomechanics and applying that knowledge to a variety of motor skills. This text combines coverage of physiology with scholarship in biomechanics as applied to motor skills.

Biomechanics of Human Motion

Biomechanics of Human Motion
Author :
Publisher : SLACK Incorporated
Total Pages : 210
Release :
ISBN-10 : 9781556429057
ISBN-13 : 1556429053
Rating : 4/5 (57 Downloads)

Synopsis Biomechanics of Human Motion by : Barney F. LeVeau

Biomechanics of Human Motion: Basics and Beyond for the Health Professions presents a straightforward approach to the basic principles, theories and applications of biomechanics and provides numerous techniques and examples for approaching biomechanical situations enhanced by healthcare professionals. Building on his previous work, Dr. Barney LeVeau uses clearly defined, concise terms and real-life applications rather than advanced mathematics to make teaching and learning biomechanics easier. Based upon the concept of force, the text illustrates how force is applied to the human body and how the body applies force to various objects. The emphasis is upon the pertinent factors that guide the reader to an understanding of biomechanics at a beginning level. Chapter Topics Include: - Strength of material such as loading and stress-strain relationships - Composition and Resolution of Forces such as graphic method and mathematical method - Equilibrium such as static, first condition and second condition - Dynamics such as kinematics and kinetics - Application such as stability and balance, motion analysis, and gait What's Inside: - Simple explanations of biological & mechanical concepts - Contemporary articles at the end of each chapter providing readers with information beyond the basics - Over 240 images illustrate biomechanical situations and computations - User-friendly, uncomplicated mathematical formulas and examples Biomechanics of Human Motion: Basics and Beyond for the Health Professions provides students and clinicians of all allied health professions with a basic background and solid foundation on which to build a solid understanding of force and biomechanics.

Handbook of Human Motion

Handbook of Human Motion
Author :
Publisher : Springer
Total Pages : 0
Release :
ISBN-10 : 3319144170
ISBN-13 : 9783319144177
Rating : 4/5 (70 Downloads)

Synopsis Handbook of Human Motion by :

The Handbook of Human Motion is a large cross-disciplinary reference work which covers the many interlinked facets of the science and technology of human motion and its measurement. Individual chapters cover fundamental principles and technological developments, the state-of-the-art and consider applications across four broad and interconnected fields; medicine, sport, forensics and animation. The huge strides in technological advancement made over the past century make it possible to measure motion with unprecedented precision, but also lead to new challenges. This work introduces the many different approaches and systems used in motion capture, including IR and ultrasound, mechanical systems and video, plus some emerging techniques. The large variety of techniques used for the study of motion science in medicine can make analysis a complicated process, but extremely effective for the treatment of the patient when well utilised. The handbook descri bes how motion capture techniques are applied in medicine, and shows how the resulting analysis can help in diagnosis and treatment. A closely related field, sports science involves a combination of in-depth medical knowledge and detailed understanding of performance and training techniques, and motion capture can play an extremely important role in linking these disciplines. The handbook considers which technologies are most appropriate in specific circumstances, how they are applied and how this can help prevent injury and improve sporting performance. The application of motion capture in forensic science and security is reviewed, with chapters dedicated to specific areas including employment law, injury analysis, criminal activity and motion/facial recognition. And in the final area of application, the book describes how novel motion capture techniques have been designed specifically to aid the creation of increasingly realistic animation within films and v ideo games, with Lord of the Rings and Avatar just two examples. Chapters will provide an overview of the bespoke motion capture techniques developed for animation, how these have influenced advances in film and game design, and the links to behavioural studies, both in humans and in robotics. Comprising a cross-referenced compendium of different techniques and applications across a broad field, the Handbook of Human Motion provides the reader with a detailed reference and simultaneously a source of inspiration for future work. The book will be of use to students, researchers, engineers and others working in any field relevant to human motion capture.

Biomechanics of Skeletal Muscles

Biomechanics of Skeletal Muscles
Author :
Publisher : Human Kinetics
Total Pages : 543
Release :
ISBN-10 : 9781492582106
ISBN-13 : 1492582107
Rating : 4/5 (06 Downloads)

Synopsis Biomechanics of Skeletal Muscles by : Vladimir M. Zatsiorsky

Richly illustrated and presented in clear, concise language, Biomechanics of Skeletal Muscles is an essential resource for those seeking advanced knowledge of muscle biomechanics. Written by leading experts Vladimir Zatsiorsky and Boris Prilutsky, the text is one of the few to look at muscle biomechanics in its entirety—from muscle fibers to muscle coordination—making it a unique contribution to the field. Using a blend of experimental evidence and mechanical models, Biomechanics of Skeletal Muscles provides an explanation of whole muscle biomechanics at work in the body in motion. The book first addresses the mechanical behavior of single muscles—from the sarcomere level up to the entire muscle. The architecture of human muscle, the mechanical properties of tendons and passive muscles, the biomechanics of active muscles, and the force transmission and shock absorption aspects of muscle are explored in detail. Next, the various issues of muscle functioning during human motion are addressed. The transformation from muscle force to joint movements, two-joint muscle function, eccentric muscle action, and muscle coordination are analyzed. This advanced text assumes some knowledge of algebra and calculus; however, the emphasis is on understanding physical concepts. Higher-level computational descriptions are placed in special sections in the later chapters of the book, allowing those with a strong mathematical background to explore this material in more detail. Readers who choose to skip over these sections will find that the book still provides a strong conceptual understanding of advanced topics. Biomechanics of Skeletal Muscles also contains numerous special features that facilitate readers’ comprehension of the topics presented. More than 300 illustrations and accompanying explanations provide an extensive visual representation of muscle biomechanics. Refresher sidebars offer brief reminders of mathematical and biomechanical concepts, and From the Literature sidebars present practical examples that illustrate the concepts under discussion. Chapter summaries and review questions provide an opportunity for reflection and self-testing, and reference lists at the end of each chapter provide a starting point for further study. Biomechanics of Skeletal Muscles offers a thorough explanation of whole muscle biomechanics, bridging the gap between foundational biomechanics texts and scientific literature. With the information found in this text, readers can prepare themselves to better understand the latest in cutting-edge research. Biomechanics of Skeletal Muscles is the third volume in the Biomechanics of Human Motion series. Advanced readers in human movement science gain a comprehensive understanding of the biomechanics of human motion as presented by one of the world’s foremost researchers on the subject, Dr. Vladimir Zatsiorsky. The series begins with Kinematics of Human Motion, which details human body positioning and movement in three dimensions; continues with Kinetics of Human Motion, which examines the forces that create body motion and their effects; and concludes with Biomechanics of Skeletal Muscles, which explains the action of the biological motors that exert force and produce mechanical work during human movement.

Biomechanics and Motor Control of Human Movement

Biomechanics and Motor Control of Human Movement
Author :
Publisher : John Wiley & Sons
Total Pages : 384
Release :
ISBN-10 : 9780470398180
ISBN-13 : 0470398183
Rating : 4/5 (80 Downloads)

Synopsis Biomechanics and Motor Control of Human Movement by : David A. Winter

The classic book on human movement in biomechanics, newly updated Widely used and referenced, David Winter's Biomechanics and Motor Control of Human Movement is a classic examination of techniques used to measure and analyze all body movements as mechanical systems, including such everyday movements as walking. It fills the gap in human movement science area where modern science and technology are integrated with anatomy, muscle physiology, and electromyography to assess and understand human movement. In light of the explosive growth of the field, this new edition updates and enhances the text with: Expanded coverage of 3D kinematics and kinetics New materials on biomechanical movement synergies and signal processing, including auto and cross correlation, frequency analysis, analog and digital filtering, and ensemble averaging techniques Presentation of a wide spectrum of measurement and analysis techniques Updates to all existing chapters Basic physical and physiological principles in capsule form for quick reference An essential resource for researchers and student in kinesiology, bioengineering (rehabilitation engineering), physical education, ergonomics, and physical and occupational therapy, this text will also provide valuable to professionals in orthopedics, muscle physiology, and rehabilitation medicine. In response to many requests, the extensive numerical tables contained in Appendix A: "Kinematic, Kinetic, and Energy Data" can also be found at the following Web site: www.wiley.com/go/biomechanics

Human Motion Simulation

Human Motion Simulation
Author :
Publisher : Academic Press
Total Pages : 296
Release :
ISBN-10 : 9780124046016
ISBN-13 : 0124046010
Rating : 4/5 (16 Downloads)

Synopsis Human Motion Simulation by : Karim Abdel-Malek

Simulate realistic human motion in a virtual world with an optimization-based approach to motion prediction. With this approach, motion is governed by human performance measures, such as speed and energy, which act as objective functions to be optimized. Constraints on joint torques and angles are imposed quite easily. Predicting motion in this way allows one to use avatars to study how and why humans move the way they do, given specific scenarios. It also enables avatars to react to infinitely many scenarios with substantial autonomy. With this approach it is possible to predict dynamic motion without having to integrate equations of motion -- rather than solving equations of motion, this approach solves for a continuous time-dependent curve characterizing joint variables (also called joint profiles) for every degree of freedom. - Introduces rigorous mathematical methods for digital human modelling and simulation - Focuses on understanding and representing spatial relationships (3D) of biomechanics - Develops an innovative optimization-based approach to predicting human movement - Extensively illustrated with 3D images of simulated human motion (full color in the ebook version)

Rigid Body Kinematics

Rigid Body Kinematics
Author :
Publisher : Cambridge University Press
Total Pages : 297
Release :
ISBN-10 : 9781108479073
ISBN-13 : 1108479073
Rating : 4/5 (73 Downloads)

Synopsis Rigid Body Kinematics by : Joaquim A. Batlle

A rigorous analysis and description of general motion in mechanical systems, which includes over 400 figures illustrating every concept, and a large collection of useful exercises. Ideal for students studying mechanical engineering, and as a reference for graduate students and researchers.

Biomechanics of Movement

Biomechanics of Movement
Author :
Publisher : MIT Press
Total Pages : 396
Release :
ISBN-10 : 9780262359191
ISBN-13 : 0262359197
Rating : 4/5 (91 Downloads)

Synopsis Biomechanics of Movement by : Thomas K. Uchida

An engaging introduction to human and animal movement seen through the lens of mechanics. How do Olympic sprinters run so fast? Why do astronauts adopt a bounding gait on the moon? How do running shoes improve performance while preventing injuries? This engaging and generously illustrated book answers these questions by examining human and animal movement through the lens of mechanics. The authors present simple conceptual models to study walking and running and apply mechanical principles to a range of interesting examples. They explore the biology of how movement is produced, examining the structure of a muscle down to its microscopic force-generating motors. Drawing on their deep expertise, the authors describe how to create simulations that provide insight into muscle coordination during walking and running, suggest treatments to improve function following injury, and help design devices that enhance human performance.