Iron Dominated Electromagnets

Iron Dominated Electromagnets
Author :
Publisher : World Scientific
Total Pages : 356
Release :
ISBN-10 : 9789812563279
ISBN-13 : 981256327X
Rating : 4/5 (79 Downloads)

Synopsis Iron Dominated Electromagnets by : Jack T. Tanabe

This unique book, written by a specialist in the field, is devoted to the design of low and medium field electromagnets whose field level and quality (uniformity) are dominated by the pole shape and saturation characteristics of the iron yoke.

Iron Dominated Electromagnets: Design, Fabrication, Assembly And Measurements

Iron Dominated Electromagnets: Design, Fabrication, Assembly And Measurements
Author :
Publisher : World Scientific Publishing Company
Total Pages : 355
Release :
ISBN-10 : 9789813101982
ISBN-13 : 9813101989
Rating : 4/5 (82 Downloads)

Synopsis Iron Dominated Electromagnets: Design, Fabrication, Assembly And Measurements by : Jack T Tanabe

This unique book, written by one of the world's foremost specialists in the field, is devoted to the design of low and medium field electromagnets whose field level and quality (uniformity) are dominated by the pole shape and saturation characteristics of the iron yoke.The wide scope covers material ranging from the physical requirements for typical high performance accelerators, through the mathematical relationships which describe the shape of two-dimensional magnetic fields, to the mechanical fabrication, assembly, installation, and alignment of magnets in a typical accelerator lattice. In addition, stored energy concepts are used to develop magnetic force relationships and expressions for magnets with time varying fields.The material in the book is derived from lecture notes used in a course at the Lawrence Livermore National Laboratory and subsequently expanded for the U.S. Particle Accelerator School, making this text an invaluable reference for students planning to enter the field of high energy physics.Mathematical relationships tying together magnet design and measurement theory are derived from first principles, and chapters are included that describe mechanical design, fabrication, installation, and alignment. Some fabrication and assembly practices are reviewed to ensure personnel and equipment safety and operational reliability of electromagnets and their power supply systems. This additional coverage makes the book an important resource for those already in the particle accelerator business as well as those requiring the design and fabrication of low and medium field level magnets for charged particle beam transport in ion implantation and medical applications.

Microwave and RF Vacuum Electronic Power Sources

Microwave and RF Vacuum Electronic Power Sources
Author :
Publisher : Cambridge University Press
Total Pages : 843
Release :
ISBN-10 : 9781108666886
ISBN-13 : 1108666884
Rating : 4/5 (86 Downloads)

Synopsis Microwave and RF Vacuum Electronic Power Sources by : Richard G. Carter

Do you design and build vacuum electron devices, or work with the systems that use them? Quickly develop a solid understanding of how these devices work with this authoritative guide, written by an author with over fifty years of experience in the field. Rigorous in its approach, it focuses on the theory and design of commercially significant types of gridded, linear-beam, crossed-field and fast-wave tubes. Essential components such as waveguides, resonators, slow-wave structures, electron guns, beams, magnets and collectors are also covered, as well as the integration and reliable operation of devices in microwave and RF systems. Complex mathematical analysis is kept to a minimum, and Mathcad worksheets supporting the book online aid understanding of key concepts and connect the theory with practice. Including coverage of primary sources and current research trends, this is essential reading for researchers, practitioners and graduate students working on vacuum electron devices.

Field Computation for Accelerator Magnets

Field Computation for Accelerator Magnets
Author :
Publisher : John Wiley & Sons
Total Pages : 778
Release :
ISBN-10 : 9783527635474
ISBN-13 : 3527635475
Rating : 4/5 (74 Downloads)

Synopsis Field Computation for Accelerator Magnets by : Stephan Russenschuck

Written by a leading expert on the electromagnetic design and engineering of superconducting accelerator magnets, this book offers the most comprehensive treatment of the subject to date. In concise and easy-to-read style, the author lays out both the mathematical basis for analytical and numerical field computation and their application to magnet design and manufacture. Of special interest is the presentation of a software-based design process that has been applied to the entire production cycle of accelerator magnets from the concept phase to field optimization, production follow-up, and hardware commissioning. Included topics: Technological challenges for the Large Hadron Collider at CERN Algebraic structures and vector fields Classical vector analysis Foundations of analytical field computation Fields and Potentials of line currents Harmonic fields The conceptual design of iron- and coil-dominated magnets Solenoids Complex analysis methods for magnet design Elementary beam optics and magnet polarities Numerical field calculation using finite- and boundary-elements Mesh generation Time transient effects in superconducting magnets, including superconductor magnetization and cable eddy-currents Quench simulation and magnet protection Mathematical optimization techniques using genetic and deterministic algorithms Practical experience from the electromagnetic design of the LHC magnets illustrates the analytical and numerical concepts, emphasizing the relevance of the presented methods to a great many applications in electrical engineering. The result is an indispensable guide for high-energy physicists, electrical engineers, materials scientists, applied mathematicians, and systems engineers.

The Science and Technology of Particle Accelerators

The Science and Technology of Particle Accelerators
Author :
Publisher : CRC Press
Total Pages : 322
Release :
ISBN-10 : 9781351007955
ISBN-13 : 1351007955
Rating : 4/5 (55 Downloads)

Synopsis The Science and Technology of Particle Accelerators by : Rob Appleby

The Science and Technology of Particle Accelerators provides an accessible introduction to the field, and is suitable for advanced undergraduates, graduate students, and academics, as well as professionals in national laboratories and facilities, industry, and medicine who are designing or using particle accelerators. Providing integrated coverage of accelerator science and technology, this book presents the fundamental concepts alongside detailed engineering discussions and extensive practical guidance, including many numerical examples. For each topic, the authors provide a description of the physical principles, a guide to the practical application of those principles, and a discussion of how to design the components that allow the application to be realised. Features: Written by an interdisciplinary and highly respected team of physicists and engineers from the Cockcroft Institute of Accelerator Science and Technology in the UK Accessible style, with many numerical examples Contains an extensive set of problems, with fully worked solutions available Rob Appleby is an academic member of staff at the University of Manchester, and Chief Examiner in the Department of Physics and Astronomy. Graeme Burt is an academic member of staff at the University of Lancaster, and previous Director of Education at the Cockcroft Institute. James Clarke is head of Science Division in the Accelerator Science and Technology Centre at STFC Daresbury Laboratory. Hywel Owen is an academic member of staff at the University of Manchester, and Director of Education at the Cockcroft Institute. All authors are researchers within the Cockcroft Institute of Accelerator Science and Technology and have extensive experience in the design and construction of particle accelerators, including particle colliders, synchrotron radiation sources, free electron lasers, and medical and industrial accelerator systems.

Numerical Approximation of the Magnetoquasistatic Model with Uncertainties

Numerical Approximation of the Magnetoquasistatic Model with Uncertainties
Author :
Publisher : Springer
Total Pages : 128
Release :
ISBN-10 : 9783319412948
ISBN-13 : 3319412949
Rating : 4/5 (48 Downloads)

Synopsis Numerical Approximation of the Magnetoquasistatic Model with Uncertainties by : Ulrich Römer

This book presents a comprehensive mathematical approach for solving stochastic magnetic field problems. It discusses variability in material properties and geometry, with an emphasis on the preservation of structural physical and mathematical properties. It especially addresses uncertainties in the computer simulation of magnetic fields originating from the manufacturing process. Uncertainties are quantified by approximating a stochastic reformulation of the governing partial differential equation, demonstrating how statistics of physical quantities of interest, such as Fourier harmonics in accelerator magnets, can be used to achieve robust designs. The book covers a number of key methods and results such as: a stochastic model of the geometry and material properties of magnetic devices based on measurement data; a detailed description of numerical algorithms based on sensitivities or on a higher-order collocation; an analysis of convergence and efficiency; and the application of the developed model and algorithms to uncertainty quantification in the complex magnet systems used in particle accelerators.

Proceedings of the Meeting of the Division of Particles and Fields of the American Physical Society for the Year 2004 (DPF2004)

Proceedings of the Meeting of the Division of Particles and Fields of the American Physical Society for the Year 2004 (DPF2004)
Author :
Publisher :
Total Pages : 860
Release :
ISBN-10 : UCSD:31822033927575
ISBN-13 :
Rating : 4/5 (75 Downloads)

Synopsis Proceedings of the Meeting of the Division of Particles and Fields of the American Physical Society for the Year 2004 (DPF2004) by : American Physical Society. Division of Particles and Fields. Meeting

CERN Courier

CERN Courier
Author :
Publisher :
Total Pages : 564
Release :
ISBN-10 : MINN:31951P00977866L
ISBN-13 :
Rating : 4/5 (6L Downloads)

Synopsis CERN Courier by : European Organization for Nuclear Research

This journal is devoted to the latest research on physics, publishing articles on everything from elementary particle behavior to black holes and the history of the universe.

Particle Accelerator Physics I

Particle Accelerator Physics I
Author :
Publisher : Springer Science & Business Media
Total Pages : 465
Release :
ISBN-10 : 9783662038277
ISBN-13 : 3662038277
Rating : 4/5 (77 Downloads)

Synopsis Particle Accelerator Physics I by : Helmut Wiedemann

In this second edition of Particle Accelerator Physics, Vol. 1, is mainly a reprint of the first edition without significant changes in content. The bibliography has been updated to include more recent progress in the field of particle accelerators. With the help of many observant readers a number of misprints and errors could be eliminated. The author would like to express his sincere appreciation to all those who have pointed out such shortcomings and wel comes such information and any other relevant information in the future. The author would also like to express his special thanks to the editor Dr. Helmut Lotsch and his staff for editorial as well as technical advice and support which contributed greatly to the broad acceptance of this text and made a second edition of both volumes necessary. Palo Alto, California Helmut Wiedemann November 1998 VII Preface to the First Edition The purpose of this textbook is to provide a comprehensive introduction into the physics of particle accelerators and particle beam dynamics. Parti cle accelerators have become important research tools in high energy physics as well as sources of incoherent and coherent radiation from the far infra red to hard x-rays for basic and applied research. During years of teaching accelerator physics it became clear that the single most annoying obstacle to get introduced into the field is the absence of a suitable textbook.

Fundamentals of Electric Propulsion

Fundamentals of Electric Propulsion
Author :
Publisher : John Wiley & Sons
Total Pages : 528
Release :
ISBN-10 : 9780470436264
ISBN-13 : 0470436263
Rating : 4/5 (64 Downloads)

Synopsis Fundamentals of Electric Propulsion by : Dan M. Goebel

Throughout most of the twentieth century, electric propulsion was considered the technology of the future. Now, the future has arrived. This important new book explains the fundamentals of electric propulsion for spacecraft and describes in detail the physics and characteristics of the two major electric thrusters in use today, ion and Hall thrusters. The authors provide an introduction to plasma physics in order to allow readers to understand the models and derivations used in determining electric thruster performance. They then go on to present detailed explanations of: Thruster principles Ion thruster plasma generators and accelerator grids Hollow cathodes Hall thrusters Ion and Hall thruster plumes Flight ion and Hall thrusters Based largely on research and development performed at the Jet Propulsion Laboratory (JPL) and complemented with scores of tables, figures, homework problems, and references, Fundamentals of Electric Propulsion: Ion and Hall Thrusters is an indispensable textbook for advanced undergraduate and graduate students who are preparing to enter the aerospace industry. It also serves as an equally valuable resource for professional engineers already at work in the field.