Inversion Theory and Conformal Mapping

Inversion Theory and Conformal Mapping
Author :
Publisher : American Mathematical Soc.
Total Pages : 130
Release :
ISBN-10 : 9780821826362
ISBN-13 : 0821826360
Rating : 4/5 (62 Downloads)

Synopsis Inversion Theory and Conformal Mapping by : David E. Blair

It is rarely taught in an undergraduate or even graduate curriculum that the only conformal maps in Euclidean space of dimension greater than two are those generated by similarities and inversions in spheres. This is in stark contrast to the wealth of conformal maps in the plane. The principal aim of this text is to give a treatment of this paucity of conformal maps in higher dimensions. The exposition includes both an analytic proof in general dimension and a differential-geometric proof in dimension three. For completeness, enough complex analysis is developed to prove the abundance of conformal maps in the plane. In addition, the book develops inversion theory as a subject, along with the auxiliary theme of circle-preserving maps. A particular feature is the inclusion of a paper by Caratheodory with the remarkable result that any circle-preserving transformation is necessarily a Mobius transformation, not even the continuity of the transformation is assumed. The text is at the level of advanced undergraduates and is suitable for a capstone course, topics course, senior seminar or independent study. Students and readers with university courses in differential geometry or complex analysis bring with them background to build on, but such courses are not essential prerequisites.

Conformal Maps And Geometry

Conformal Maps And Geometry
Author :
Publisher : World Scientific
Total Pages : 240
Release :
ISBN-10 : 9781786346155
ISBN-13 : 178634615X
Rating : 4/5 (55 Downloads)

Synopsis Conformal Maps And Geometry by : Dmitry Beliaev

'I very much enjoyed reading this book … Each chapter comes with well thought-out exercises, solutions to which are given at the end of the chapter. Conformal Maps and Geometry presents key topics in geometric function theory and the theory of univalent functions, and also prepares the reader to progress to study the SLE. It succeeds admirably on both counts.'MathSciNetGeometric function theory is one of the most interesting parts of complex analysis, an area that has become increasingly relevant as a key feature in the theory of Schramm-Loewner evolution.Though Riemann mapping theorem is frequently explored, there are few texts that discuss general theory of univalent maps, conformal invariants, and Loewner evolution. This textbook provides an accessible foundation of the theory of conformal maps and their connections with geometry.It offers a unique view of the field, as it is one of the first to discuss general theory of univalent maps at a graduate level, while introducing more complex theories of conformal invariants and extremal lengths. Conformal Maps and Geometry is an ideal resource for graduate courses in Complex Analysis or as an analytic prerequisite to study the theory of Schramm-Loewner evolution.

Experiencing Geometry

Experiencing Geometry
Author :
Publisher : Prentice Hall
Total Pages : 438
Release :
ISBN-10 : STANFORD:36105114443091
ISBN-13 :
Rating : 4/5 (91 Downloads)

Synopsis Experiencing Geometry by : David Wilson Henderson

The distinctive approach of Henderson and Taimina's volume stimulates readers to develop a broader, deeper, understanding of mathematics through active experience--including discovery, discussion, writing fundamental ideas and learning about the history of those ideas. A series of interesting, challenging problems encourage readers to gather and discuss their reasonings and understanding. The volume provides an understanding of the possible shapes of the physical universe. The authors provide extensive information on historical strands of geometry, straightness on cylinders and cones and hyperbolic planes, triangles and congruencies, area and holonomy, parallel transport, SSS, ASS, SAA, and AAA, parallel postulates, isometries and patterns, dissection theory, square roots, pythagoras and similar triangles, projections of a sphere onto a plane, inversions in circles, projections (models) of hyperbolic planes, trigonometry and duality, 3-spheres and hyperbolic 3-spaces and polyhedra. For mathematics educators and other who need to understand the meaning of geometry.

Elementary Algebraic Geometry

Elementary Algebraic Geometry
Author :
Publisher : American Mathematical Soc.
Total Pages : 225
Release :
ISBN-10 : 9780821829523
ISBN-13 : 0821829521
Rating : 4/5 (23 Downloads)

Synopsis Elementary Algebraic Geometry by : Klaus Hulek

This book is a true introduction to the basic concepts and techniques of algebraic geometry. The language is purposefully kept on an elementary level, avoiding sheaf theory and cohomology theory. The introduction of new algebraic concepts is always motivated by a discussion of the corresponding geometric ideas. The main point of the book is to illustrate the interplay between abstract theory and specific examples. The book contains numerous problems that illustrate the general theory. The text is suitable for advanced undergraduates and beginning graduate students. It contains sufficient material for a one-semester course. The reader should be familiar with the basic concepts of modern algebra. A course in one complex variable would be helpful, but is not necessary.

Problems in Mathematical Analysis: Continuity and differentiation

Problems in Mathematical Analysis: Continuity and differentiation
Author :
Publisher : American Mathematical Soc.
Total Pages : 418
Release :
ISBN-10 : 9780821820513
ISBN-13 : 0821820516
Rating : 4/5 (13 Downloads)

Synopsis Problems in Mathematical Analysis: Continuity and differentiation by : Wiesława J. Kaczor

We learn by doing. We learn mathematics by doing problems. And we learn more mathematics by doing more problems. This is the sequel to Problems in Mathematical Analysis I (Volume 4 in the Student Mathematical Library series). If you want to hone your understanding of continuous and differentiable functions, this book contains hundreds of problems to help you do so. The emphasis here is on real functions of a single variable. The book is mainly geared toward students studying the basic principles of analysis. However, given its selection of problems, organization, and level, it would be an ideal choice for tutorial or problem-solving seminars, particularly those geared toward the Putnam exam. It is also suitable for self-study. The presentation of the material is designed to help student comprehension, to encourage them to ask their own questions, and to start research. The collection of problems will also help teachers who wish to incorporate problems into their lectures. The problems are grouped into sections according to the methods of solution. Solutions for the problems are provided.

$p$-adic Analysis Compared with Real

$p$-adic Analysis Compared with Real
Author :
Publisher : American Mathematical Soc.
Total Pages : 170
Release :
ISBN-10 : 9780821842201
ISBN-13 : 082184220X
Rating : 4/5 (01 Downloads)

Synopsis $p$-adic Analysis Compared with Real by : Svetlana Katok

The book gives an introduction to $p$-adic numbers from the point of view of number theory, topology, and analysis. Compared to other books on the subject, its novelty is both a particularly balanced approach to these three points of view and an emphasis on topics accessible to undergraduates. in addition, several topics from real analysis and elementary topology which are not usually covered in undergraduate courses (totally disconnected spaces and Cantor sets, points of discontinuity of maps and the Baire Category Theorem, surjectivity of isometries of compact metric spaces) are also included in the book. They will enhance the reader's understanding of real analysis and intertwine the real and $p$-adic contexts of the book. The book is based on an advanced undergraduate course given by the author. The choice of the topic was motivated by the internal beauty of the subject of $p$-adic analysis, an unusual one in the undergraduate curriculum, and abundant opportunities to compare it with its much more familiar real counterpart. The book includes a large number of exercises. Answers, hints, and solutions for most of them appear at the end of the book. Well written, with obvious care for the reader, the book can be successfully used in a topic course or for self-study.

Modeling and Identification of Linear Parameter-Varying Systems

Modeling and Identification of Linear Parameter-Varying Systems
Author :
Publisher : Springer Science & Business Media
Total Pages : 337
Release :
ISBN-10 : 9783642138119
ISBN-13 : 364213811X
Rating : 4/5 (19 Downloads)

Synopsis Modeling and Identification of Linear Parameter-Varying Systems by : Roland Toth

Through the past 20 years, the framework of Linear Parameter-Varying (LPV) systems has become a promising system theoretical approach to h- dle the controlof mildly nonlinear and especially position dependent systems which are common in mechatronic applications and in the process ind- try. The birth of this system class was initiated by the need of engineers to achieve better performance for nonlinear and time-varying dynamics, c- mon in many industrial applications, than what the classical framework of Linear Time-Invariant (LTI) control can provide. However, it was also a p- mary goal to preserve simplicity and “re-use” the powerful LTI results by extending them to the LPV case. The progress continued according to this philosophy and LPV control has become a well established ?eld with many promising applications. Unfortunately, modeling of LPV systems, especially based on measured data (which is called system identi?cation) has seen a limited development sincethebirthoftheframework. Currentlythisbottleneck oftheLPVfra- work is halting the transfer of the LPV theory into industrial use. Without good models that ful?ll the expectations of the users and without the und- standing how these models correspond to the dynamics of the application, it is di?cult to design high performance LPV control solutions. This book aims to bridge the gap between modeling and control by investigating the fundamental questions of LPV modeling and identi?cation. It explores the missing details of the LPV system theory that have hindered the formu- tion of a well established identi?cation framework.

Differential Geometry, Algebra, and Analysis

Differential Geometry, Algebra, and Analysis
Author :
Publisher : Springer Nature
Total Pages : 284
Release :
ISBN-10 : 9789811554551
ISBN-13 : 9811554552
Rating : 4/5 (51 Downloads)

Synopsis Differential Geometry, Algebra, and Analysis by : Mohammad Hasan Shahid

This book is a collection of selected research papers, some of which were presented at the International Conference on Differential Geometry, Algebra and Analysis (ICDGAA 2016), held at the Department of Mathematics, Jamia Millia Islamia, New Delhi, from 15–17 November 2016. It covers a wide range of topics—geometry of submanifolds, geometry of statistical submanifolds, ring theory, module theory, optimization theory, and approximation theory—which exhibit new ideas and methodologies for current research in differential geometry, algebra and analysis. Providing new results with rigorous proofs, this book is, therefore, of much interest to readers who wish to learn new techniques in these areas of mathematics.

Finite Fields and Applications

Finite Fields and Applications
Author :
Publisher : American Mathematical Soc.
Total Pages : 190
Release :
ISBN-10 : 9780821844182
ISBN-13 : 0821844180
Rating : 4/5 (82 Downloads)

Synopsis Finite Fields and Applications by : Gary L. Mullen

Finite fields Combinatorics Algebraic coding theory Cryptography Background in number theory and abstract algebra Hints for selected exercises References Index.

Plateau's Problem

Plateau's Problem
Author :
Publisher : American Mathematical Soc.
Total Pages : 96
Release :
ISBN-10 : 9780821827475
ISBN-13 : 0821827472
Rating : 4/5 (75 Downloads)

Synopsis Plateau's Problem by : Frederick J. Almgren (Jr.)

There have been many wonderful developments in the theory of minimal surfaces and geometric measure theory in the past 25 to 30 years. Many of the researchers who have produced these excellent results were inspired by this little book - or by Fred Almgren himself. The book is indeed a delightful invitation to the world of variational geometry. A central topic is Plateau's Problem, which is concerned with surfaces that model the behavior of soap films.When trying to resolve the problem, however, one soon finds that smooth surfaces are insufficient: Varifolds are needed. With varifolds, one can obtain geometrically meaningful solutions without having to know in advance all their possible singularities. This new tool makes possible much exciting new analysis and many new results. Plateau's problem and varifolds live in the world of geometric measure theory, where differential geometry and measure theory combine to solve problems which have variational aspects. The author's hope in writing this book was to encourage young mathematicians to study this fascinating subject further. Judging from the success of his students, it achieves this exceedingly well.