Inverse Methods for Atmospheric Sounding

Inverse Methods for Atmospheric Sounding
Author :
Publisher : World Scientific
Total Pages : 256
Release :
ISBN-10 : 9789810227401
ISBN-13 : 981022740X
Rating : 4/5 (01 Downloads)

Synopsis Inverse Methods for Atmospheric Sounding by : Clive D. Rodgers

Annotation Rodgers (U. of Oxford) provides graduate students and other researchers a background to the inverse problem and its solution, with applications relating to atmospheric measurements. He introduces the stages in the reverse order than the usual approach in order to develop the learner's intuition about the nature of the inverse problem. Annotation copyrighted by Book News, Inc., Portland, OR.

Inverse Methods For Atmospheric Sounding: Theory And Practice

Inverse Methods For Atmospheric Sounding: Theory And Practice
Author :
Publisher : World Scientific
Total Pages : 256
Release :
ISBN-10 : 9789814498685
ISBN-13 : 9814498688
Rating : 4/5 (85 Downloads)

Synopsis Inverse Methods For Atmospheric Sounding: Theory And Practice by : Clive D Rodgers

Remote sounding of the atmosphere has proved to be a fruitful method of obtaining global information about the atmospheres of the earth and other planets. This book treats comprehensively the inverse problem of remote sounding, and discusses a wide range of retrieval methods for extracting atmospheric parameters of interest from the quantities (thermal emission, for example) that can be measured remotely. Inverse theory is treated in depth from an estimation-theory point of view, but practical questions are also emphasized, such as designing observing systems to obtain the maximum quantity of information, efficient numerical implementation of algorithms for processing large quantities of data, error analysis and approaches to the validation of the resulting retrievals. The book is targeted at graduate students as well as scientists.

Inversion Methods in Atmospheric Remote Sounding

Inversion Methods in Atmospheric Remote Sounding
Author :
Publisher : Elsevier
Total Pages : 639
Release :
ISBN-10 : 9780323144148
ISBN-13 : 0323144144
Rating : 4/5 (48 Downloads)

Synopsis Inversion Methods in Atmospheric Remote Sounding by : Adarsh Deepak

Inversion Methods in Atmospheric Remote Sounding contains the technical proceedings of the First International Interactive Workshop on Inversion Methods in Atmospheric Remote Sounding, held in Williamsburg, Virginia, on December 15-17, 1976. The papers review the state of the art in inversion methods used in retrieving information about the atmosphere from remotely sensed data. The mathematical theory of inversion methods is described, together with the application of these methods to the remote sounding of atmospheric temperature, relative humidity, and gaseous and aerosol constituents. Comprised of 21 chapters, this book begins with an introduction to methods for solving problems in radiative transfer and multiple scattering, followed by a discussion on the problem of radiative transfer in a scattering plane-parallel atmosphere. The next section is devoted to the mathematical theory of inversion methods and considers some aspects of the inversion problem in remote sensing, along with the relaxation method for the inverse solution of nonlinear and linear transfer equations. The final section explores inversion methods in gaseous, thermal, and aerosol atmospheres, covering topics such as the Backus-Gilbert theory and its application to retrieval of ozone and temperature profiles; inversion of scattered radiance horizon profiles for gaseous concentrations and aerosol parameters; and inversion of passive microwave remote sensing data from satellites. This monograph will be of interest to scientists from universities, government agencies, and research laboratories.

Numerical Regularization for Atmospheric Inverse Problems

Numerical Regularization for Atmospheric Inverse Problems
Author :
Publisher : Springer Science & Business Media
Total Pages : 432
Release :
ISBN-10 : 9783642054396
ISBN-13 : 3642054390
Rating : 4/5 (96 Downloads)

Synopsis Numerical Regularization for Atmospheric Inverse Problems by : Adrian Doicu

The retrieval problems arising in atmospheric remote sensing belong to the class of the - called discrete ill-posed problems. These problems are unstable under data perturbations, and can be solved by numerical regularization methods, in which the solution is stabilized by taking additional information into account. The goal of this research monograph is to present and analyze numerical algorithms for atmospheric retrieval. The book is aimed at physicists and engineers with some ba- ground in numerical linear algebra and matrix computations. Although there are many practical details in this book, for a robust and ef?cient implementation of all numerical algorithms, the reader should consult the literature cited. The data model adopted in our analysis is semi-stochastic. From a practical point of view, there are no signi?cant differences between a semi-stochastic and a determin- tic framework; the differences are relevant from a theoretical point of view, e.g., in the convergence and convergence rates analysis. After an introductory chapter providing the state of the art in passive atmospheric remote sensing, Chapter 2 introduces the concept of ill-posedness for linear discrete eq- tions. To illustrate the dif?culties associated with the solution of discrete ill-posed pr- lems, we consider the temperature retrieval by nadir sounding and analyze the solvability of the discrete equation by using the singular value decomposition of the forward model matrix.

Inverse Problems of Lidar Sensing of the Atmosphere

Inverse Problems of Lidar Sensing of the Atmosphere
Author :
Publisher : Springer
Total Pages : 273
Release :
ISBN-10 : 9783540388029
ISBN-13 : 3540388028
Rating : 4/5 (29 Downloads)

Synopsis Inverse Problems of Lidar Sensing of the Atmosphere by : V.E. Zuev

This monograph undertakes to present systematically the methods for solving inverse problems of lidar sensing of the atmosphere, with emphasis on lidar techniques that are based on the use of light scattering by aerosols. The theory of multi-frequency lidar sensing, as a new method for studying the microphysical and optical characteristics of aerosol formations, is also pre sented in detail. The possibilities of this theory are illustrated by the experimental results on microstructure analysis of tropospheric and low stratospheric aerosols obtained with ground-based two- and three-frequency lidars. The lidar facilities used in these experimental studies were construc ted at the Institute of Atmospheric Optics S8 USSR Academy of Sciences. Some aspects of remote control of dispersed air pollution using lidar systems are also considered. A rigorous theory for inverting the data of polarization lidar measure ments is discussed, along with its application to remote measurement of the complex index of refraction of aerosol substances and the microstructure pa rameters of background aerosols using double-ended lidar schemes. Solutions to such important problems as the separation of contributions due to Rayleigh molecular and Mie-aerosol light scattering into the total backscatter are ob tained by using this theory. Lidar polarization measurements are shown to be useful in this case. The efficiency of the methods suggested here for inter preting the lidar polarization measurements is illustrated by experimental results on the investigation of the microphysical parameters of natural aero sols and artificial smokes using polarization nephelometers.

Modeling of Atmospheric Chemistry

Modeling of Atmospheric Chemistry
Author :
Publisher : Cambridge University Press
Total Pages : 631
Release :
ISBN-10 : 9781108210959
ISBN-13 : 1108210953
Rating : 4/5 (59 Downloads)

Synopsis Modeling of Atmospheric Chemistry by : Guy P. Brasseur

Mathematical modeling of atmospheric composition is a formidable scientific and computational challenge. This comprehensive presentation of the modeling methods used in atmospheric chemistry focuses on both theory and practice, from the fundamental principles behind models, through to their applications in interpreting observations. An encyclopaedic coverage of methods used in atmospheric modeling, including their advantages and disadvantages, makes this a one-stop resource with a large scope. Particular emphasis is given to the mathematical formulation of chemical, radiative, and aerosol processes; advection and turbulent transport; emission and deposition processes; as well as major chapters on model evaluation and inverse modeling. The modeling of atmospheric chemistry is an intrinsically interdisciplinary endeavour, bringing together meteorology, radiative transfer, physical chemistry and biogeochemistry, making the book of value to a broad readership. Introductory chapters and a review of the relevant mathematics make this book instantly accessible to graduate students and researchers in the atmospheric sciences.

Aerospace Technologies Advancements

Aerospace Technologies Advancements
Author :
Publisher : BoD – Books on Demand
Total Pages : 516
Release :
ISBN-10 : 9789537619961
ISBN-13 : 9537619966
Rating : 4/5 (61 Downloads)

Synopsis Aerospace Technologies Advancements by : Thawar Arif

Space technology has become increasingly important after the great development and rapid progress in information and communication technology as well as the technology of space exploration. This book deals with the latest and most prominent research in space technology. The first part of the book (first six chapters) deals with the algorithms and software used in information processing, communications and control of spacecrafts. The second part (chapters 7 to 10) deals with the latest research on the space structures. The third part (chapters 11 to 14) deals with some of the latest applications in space. The fourth part (chapters 15 and 16) deals with small satellite technologies. The fifth part (chapters 17 to 20) deals with some of the latest applications in the field of aircrafts. The sixth part (chapters 21 to 25) outlines some recent research efforts in different subjects.

Atmospheric Acoustic Remote Sensing

Atmospheric Acoustic Remote Sensing
Author :
Publisher : CRC Press
Total Pages : 296
Release :
ISBN-10 : 1420005286
ISBN-13 : 9781420005288
Rating : 4/5 (86 Downloads)

Synopsis Atmospheric Acoustic Remote Sensing by : Stuart Bradley

Sonic Detection and Ranging (SODAR) systems and Radio Acoustic Sounding Systems (RASS) use sound waves to determine wind speed, wind direction, and turbulent character of the atmosphere. They are increasingly used for environmental and scientific applications such as analyzing ground-level pollution dispersion and monitoring conditions affecting wind energy generation. However, until now there have been no reliable references on SODAR and RASS for practitioners in the field as well as non-experts who wish to understand and implement this technology to their own applications. Authored by an internationally known expert in the design and use of SODAR/RASS technology, Atmospheric Acoustic Remote Sensing: Principles and Applications systematically explains the underlying science, principles, and operational aspects of acoustic radars. Abundant diagrams and figures, including eight pages of full-color images, enhance clear guidelines and tools for handling calibration, error, equipment, hardware, sampling, and data analysis. The final chapter explores applications in environmental research, boundary layer research, wind power and loading, complex terrain, and sound speed profiles. Atmospheric Acoustic Remote Sensing offers SODAR and RASS users as well as general remote sensing practitioners, environmental scientists, and engineers a straightforward guide for using SODARs to perform wind measurements and data analysis for scientific, environmental, or alternative monitoring applications.

Occultations for Probing Atmosphere and Climate

Occultations for Probing Atmosphere and Climate
Author :
Publisher : Springer Science & Business Media
Total Pages : 432
Release :
ISBN-10 : 9783662090411
ISBN-13 : 3662090414
Rating : 4/5 (11 Downloads)

Synopsis Occultations for Probing Atmosphere and Climate by : Gottfried Kirchengast

Use of occultation methodology for observing the Earth's atmosphere and climate has become so broad as to comprise solar, lunar, stellar, navigation and satellite crosslink occultation methods. The atmospheric parameters obtained extend from the fundamental variables temperature, density, pressure, water vapor, and ozone via a multitude of trace gas species to particulate species such as aerosols and cloud liquid water. Ionospheric electron density is sensed as well. The methods all share the key properties of self-calibration, high accuracy and vertical resolution, global coverage, and (if using radio signals) all-weather capability. Occultation data are thus of high value in a wide range of fields including climate monitoring and research, atmospheric physics and chemistry, operational meteorology, and other fields such as space weather and planetary science. This wide area of variants and uses of the occultation method has led to a diversi fication of the occultation-related scientific community into a range of different sub-communities, however. The 1st International Workshop on Occultations for Probing Atmosphere and Cli mate-OPAC-1- held September 16-20, 2002, in Graz, Austria, has set in ex actly at this point. OPAC-1 aimed at providing a casual forum and stimulating at mosphere fertilizing scientific discourse, co-operation initiatives, and mutual learning and support amongst members of all the different sub-communities. The workshop was attended by about 80 participants from 17 different countries who actively contributed to a scientific programme of high quality and to an excellent workshop atmosphere, which was judged by the participants to have fully met the aims expressed.