Inverse And Ill Posed Problems
Download Inverse And Ill Posed Problems full books in PDF, epub, and Kindle. Read online free Inverse And Ill Posed Problems ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Heinz W. Engl |
Publisher |
: Elsevier |
Total Pages |
: 585 |
Release |
: 2014-05-10 |
ISBN-10 |
: 9781483272658 |
ISBN-13 |
: 1483272656 |
Rating |
: 4/5 (58 Downloads) |
Synopsis Inverse and Ill-Posed Problems by : Heinz W. Engl
Inverse and Ill-Posed Problems is a collection of papers presented at a seminar of the same title held in Austria in June 1986. The papers discuss inverse problems in various disciplines; mathematical solutions of integral equations of the first kind; general considerations for ill-posed problems; and the various regularization methods for integral and operator equations of the first kind. Other papers deal with applications in tomography, inverse scattering, detection of radiation sources, optics, partial differential equations, and parameter estimation problems. One paper discusses three topics on ill-posed problems, namely, the imposition of specified types of discontinuities on solutions of ill-posed problems, the use of generalized cross validation as a data based termination rule for iterative methods, and also a parameter estimation problem in reservoir modeling. Another paper investigates a statistical method to determine the truncation level in Eigen function expansions and for Fredholm equations of the first kind where the data contains some errors. Another paper examines the use of singular function expansions in the inversion of severely ill-posed problems arising in confocal scanning microscopy, particle sizing, and velocimetry. The collection can benefit many mathematicians, students, and professor of calculus, statistics, and advanced mathematics.
Author |
: Sergey I. Kabanikhin |
Publisher |
: Walter de Gruyter |
Total Pages |
: 476 |
Release |
: 2011-12-23 |
ISBN-10 |
: 9783110224016 |
ISBN-13 |
: 3110224011 |
Rating |
: 4/5 (16 Downloads) |
Synopsis Inverse and Ill-posed Problems by : Sergey I. Kabanikhin
The theory of ill-posed problems originated in an unusual way. As a rule, a new concept is a subject in which its creator takes a keen interest. The concept of ill-posed problems was introduced by Hadamard with the comment that these problems are physically meaningless and not worthy of the attention of serious researchers. Despite Hadamard's pessimistic forecasts, however, his unloved "child" has turned into a powerful theory whose results are used in many fields of pure and applied mathematics. What is the secret of its success? The answer is clear. Ill-posed problems occur everywhere and it is unreasonable to ignore them. Unlike ill-posed problems, inverse problems have no strict mathematical definition. In general, they can be described as the task of recovering a part of the data of a corresponding direct (well-posed) problem from information about its solution. Inverse problems were first encountered in practice and are mostly ill-posed. The urgent need for their solution, especially in geological exploration and medical diagnostics, has given powerful impetus to the development of the theory of ill-posed problems. Nowadays, the terms "inverse problem" and "ill-posed problem" are inextricably linked to each other. Inverse and ill-posed problems are currently attracting great interest. A vast literature is devoted to these problems, making it necessary to systematize the accumulated material. This book is the first small step in that direction. We propose a classification of inverse problems according to the type of equation, unknowns and additional information. We consider specific problems from a single position and indicate relationships between them. The problems relate to different areas of mathematics, such as linear algebra, theory of integral equations, integral geometry, spectral theory and mathematical physics. We give examples of applied problems that can be studied using the techniques we describe. This book was conceived as a textbook on the foundations of the theory of inverse and ill-posed problems for university students. The author's intention was to explain this complex material in the most accessible way possible. The monograph is aimed primarily at those who are just beginning to get to grips with inverse and ill-posed problems but we hope that it will be useful to anyone who is interested in the subject.
Author |
: Anatoly B. Bakushinsky |
Publisher |
: Walter de Gruyter GmbH & Co KG |
Total Pages |
: 447 |
Release |
: 2018-02-05 |
ISBN-10 |
: 9783110556384 |
ISBN-13 |
: 3110556383 |
Rating |
: 4/5 (84 Downloads) |
Synopsis Regularization Algorithms for Ill-Posed Problems by : Anatoly B. Bakushinsky
This specialized and authoritative book contains an overview of modern approaches to constructing approximations to solutions of ill-posed operator equations, both linear and nonlinear. These approximation schemes form a basis for implementable numerical algorithms for the stable solution of operator equations arising in contemporary mathematical modeling, and in particular when solving inverse problems of mathematical physics. The book presents in detail stable solution methods for ill-posed problems using the methodology of iterative regularization of classical iterative schemes and the techniques of finite dimensional and finite difference approximations of the problems under study. Special attention is paid to ill-posed Cauchy problems for linear operator differential equations and to ill-posed variational inequalities and optimization problems. The readers are expected to have basic knowledge in functional analysis and differential equations. The book will be of interest to applied mathematicians and specialists in mathematical modeling and inverse problems, and also to advanced students in these fields. Contents Introduction Regularization Methods For Linear Equations Finite Difference Methods Iterative Regularization Methods Finite-Dimensional Iterative Processes Variational Inequalities and Optimization Problems
Author |
: Barbara Kaltenbacher |
Publisher |
: Walter de Gruyter |
Total Pages |
: 205 |
Release |
: 2008-09-25 |
ISBN-10 |
: 9783110208276 |
ISBN-13 |
: 311020827X |
Rating |
: 4/5 (76 Downloads) |
Synopsis Iterative Regularization Methods for Nonlinear Ill-Posed Problems by : Barbara Kaltenbacher
Nonlinear inverse problems appear in many applications, and typically they lead to mathematical models that are ill-posed, i.e., they are unstable under data perturbations. Those problems require a regularization, i.e., a special numerical treatment. This book presents regularization schemes which are based on iteration methods, e.g., nonlinear Landweber iteration, level set methods, multilevel methods and Newton type methods.
Author |
: Alemdar Hasanov Hasanoğlu |
Publisher |
: Springer |
Total Pages |
: 264 |
Release |
: 2017-07-31 |
ISBN-10 |
: 9783319627977 |
ISBN-13 |
: 331962797X |
Rating |
: 4/5 (77 Downloads) |
Synopsis Introduction to Inverse Problems for Differential Equations by : Alemdar Hasanov Hasanoğlu
This book presents a systematic exposition of the main ideas and methods in treating inverse problems for PDEs arising in basic mathematical models, though it makes no claim to being exhaustive. Mathematical models of most physical phenomena are governed by initial and boundary value problems for PDEs, and inverse problems governed by these equations arise naturally in nearly all branches of science and engineering. The book’s content, especially in the Introduction and Part I, is self-contained and is intended to also be accessible for beginning graduate students, whose mathematical background includes only basic courses in advanced calculus, PDEs and functional analysis. Further, the book can be used as the backbone for a lecture course on inverse and ill-posed problems for partial differential equations. In turn, the second part of the book consists of six nearly-independent chapters. The choice of these chapters was motivated by the fact that the inverse coefficient and source problems considered here are based on the basic and commonly used mathematical models governed by PDEs. These chapters describe not only these inverse problems, but also main inversion methods and techniques. Since the most distinctive features of any inverse problems related to PDEs are hidden in the properties of the corresponding solutions to direct problems, special attention is paid to the investigation of these properties.
Author |
: Valentin K. Ivanov |
Publisher |
: Walter de Gruyter |
Total Pages |
: 296 |
Release |
: 2013-02-18 |
ISBN-10 |
: 9783110944822 |
ISBN-13 |
: 3110944820 |
Rating |
: 4/5 (22 Downloads) |
Synopsis Theory of Linear Ill-Posed Problems and its Applications by : Valentin K. Ivanov
This monograph is a revised and extended version of the Russian edition from 1978. It includes the general theory of linear ill-posed problems concerning e. g. the structure of sets of uniform regularization, the theory of error estimation, and the optimality method. As a distinguishing feature the book considers ill-posed problems not only in Hilbert but also in Banach spaces. It is natural that since the appearance of the first edition considerable progress has been made in the theory of inverse and ill-posed problems as wall as in ist applications. To reflect these accomplishments the authors included additional material e. g. comments to each chapter and a list of monographs with annotations.
Author |
: A. A. Samarskii |
Publisher |
: Walter de Gruyter |
Total Pages |
: 453 |
Release |
: 2008-08-27 |
ISBN-10 |
: 9783110205794 |
ISBN-13 |
: 3110205793 |
Rating |
: 4/5 (94 Downloads) |
Synopsis Numerical Methods for Solving Inverse Problems of Mathematical Physics by : A. A. Samarskii
The main classes of inverse problems for equations of mathematical physics and their numerical solution methods are considered in this book which is intended for graduate students and experts in applied mathematics, computational mathematics, and mathematical modelling.
Author |
: Andreas Kirsch |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 314 |
Release |
: 2011-03-24 |
ISBN-10 |
: 9781441984746 |
ISBN-13 |
: 1441984747 |
Rating |
: 4/5 (46 Downloads) |
Synopsis An Introduction to the Mathematical Theory of Inverse Problems by : Andreas Kirsch
This book introduces the reader to the area of inverse problems. The study of inverse problems is of vital interest to many areas of science and technology such as geophysical exploration, system identification, nondestructive testing and ultrasonic tomography. The aim of this book is twofold: in the first part, the reader is exposed to the basic notions and difficulties encountered with ill-posed problems. Basic properties of regularization methods for linear ill-posed problems are studied by means of several simple analytical and numerical examples. The second part of the book presents two special nonlinear inverse problems in detail - the inverse spectral problem and the inverse scattering problem. The corresponding direct problems are studied with respect to existence, uniqueness and continuous dependence on parameters. Then some theoretical results as well as numerical procedures for the inverse problems are discussed. The choice of material and its presentation in the book are new, thus making it particularly suitable for graduate students. Basic knowledge of real analysis is assumed. In this new edition, the Factorization Method is included as one of the prominent members in this monograph. Since the Factorization Method is particularly simple for the problem of EIT and this field has attracted a lot of attention during the past decade a chapter on EIT has been added in this monograph as Chapter 5 while the chapter on inverse scattering theory is now Chapter 6.The main changes of this second edition compared to the first edition concern only Chapters 5 and 6 and the Appendix A. Chapter 5 introduces the reader to the inverse problem of electrical impedance tomography.
Author |
: Martin Hanke |
Publisher |
: SIAM |
Total Pages |
: 171 |
Release |
: 2017-01-01 |
ISBN-10 |
: 9781611974935 |
ISBN-13 |
: 1611974933 |
Rating |
: 4/5 (35 Downloads) |
Synopsis A Taste of Inverse Problems by : Martin Hanke
Inverse problems need to be solved in order to properly interpret indirect measurements. Often, inverse problems are ill-posed and sensitive to data errors. Therefore one has to incorporate some sort of regularization to reconstruct significant information from the given data. A Taste of Inverse Problems: Basic Theory and Examples?presents the main achievements that have emerged in regularization theory over the past 50 years, focusing on linear ill-posed problems and the development of methods that can be applied to them. Some of this material has previously appeared only in journal articles. This book rigorously discusses state-of-the-art inverse problems theory, focusing on numerically relevant aspects and omitting subordinate generalizations; presents diverse real-world applications, important test cases, and possible pitfalls; and treats these applications with the same rigor and depth as the theory.
Author |
: Curtis R. Vogel |
Publisher |
: SIAM |
Total Pages |
: 195 |
Release |
: 2002-01-01 |
ISBN-10 |
: 9780898717570 |
ISBN-13 |
: 0898717574 |
Rating |
: 4/5 (70 Downloads) |
Synopsis Computational Methods for Inverse Problems by : Curtis R. Vogel
Provides a basic understanding of both the underlying mathematics and the computational methods used to solve inverse problems.