Introductory Nanoelectronics

Introductory Nanoelectronics
Author :
Publisher : CRC Press
Total Pages : 911
Release :
ISBN-10 : 9781351204651
ISBN-13 : 1351204653
Rating : 4/5 (51 Downloads)

Synopsis Introductory Nanoelectronics by : Vinod Kumar Khanna

This introductory text develops the reader’s fundamental understanding of core principles and experimental aspects underlying the operation of nanoelectronic devices. The author makes a thorough and systematic presentation of electron transport in quantum-confined systems such as quantum dots, quantum wires, and quantum wells together with Landauer-Büttiker formalism and non-equilibrium Green’s function approach. The coverage encompasses nanofabrication techniques and characterization tools followed by a comprehensive exposition of nanoelectronic devices including resonant tunneling diodes, nanoscale MOSFETs, carbon nanotube FETs, high-electron-mobility transistors, single-electron transistors, and heterostructure optoelectronic devices. The writing throughout is simple and straightforward, with clearly drawn illustrations and extensive self-study exercises for each chapter. Introduces the basic concepts underlying the operation of nanoelectronic devices. Offers a broad overview of the field, including state-of-the-art developments. Covers the relevant quantum and solid-state physics and nanoelectronic device principles. Written in lucid language with accessible mathematical treatment. Includes extensive end-of-chapter exercises and many insightful diagrams.

Introductory Nanoelectronics

Introductory Nanoelectronics
Author :
Publisher : CRC Press
Total Pages : 410
Release :
ISBN-10 : 9781351204668
ISBN-13 : 1351204661
Rating : 4/5 (68 Downloads)

Synopsis Introductory Nanoelectronics by : Vinod Kumar Khanna

This introductory text develops the reader’s fundamental understanding of core principles and experimental aspects underlying the operation of nanoelectronic devices. The author makes a thorough and systematic presentation of electron transport in quantum-confined systems such as quantum dots, quantum wires, and quantum wells together with Landauer-Büttiker formalism and non-equilibrium Green’s function approach. The coverage encompasses nanofabrication techniques and characterization tools followed by a comprehensive exposition of nanoelectronic devices including resonant tunneling diodes, nanoscale MOSFETs, carbon nanotube FETs, high-electron-mobility transistors, single-electron transistors, and heterostructure optoelectronic devices. The writing throughout is simple and straightforward, with clearly drawn illustrations and extensive self-study exercises for each chapter. Introduces the basic concepts underlying the operation of nanoelectronic devices. Offers a broad overview of the field, including state-of-the-art developments. Covers the relevant quantum and solid-state physics and nanoelectronic device principles. Written in lucid language with accessible mathematical treatment. Includes extensive end-of-chapter exercises and many insightful diagrams.

Introduction to Nanoelectronics

Introduction to Nanoelectronics
Author :
Publisher : Cambridge University Press
Total Pages : 346
Release :
ISBN-10 : 9780521881722
ISBN-13 : 0521881722
Rating : 4/5 (22 Downloads)

Synopsis Introduction to Nanoelectronics by : Vladimir V. Mitin

A comprehensive textbook on nanoelectronics covering the underlying physics, nanostructures, nanomaterials and nanodevices.

Introduction to the Physics of Nanoelectronics

Introduction to the Physics of Nanoelectronics
Author :
Publisher : Elsevier
Total Pages : 308
Release :
ISBN-10 : 9780857095886
ISBN-13 : 0857095889
Rating : 4/5 (86 Downloads)

Synopsis Introduction to the Physics of Nanoelectronics by : Seng Ghee Tan

This book provides an introduction to the physics of nanoelectronics, with a focus on the theoretical aspects of nanoscale devices. The book begins with an overview of the mathematics and quantum mechanics pertaining to nanoscale electronics, to facilitate the understanding of subsequent chapters. It goes on to encompass quantum electronics, spintronics, Hall effects, carbon and graphene electronics, and topological physics in nanoscale devices.Theoretical methodology is developed using quantum mechanical and non-equilibrium Green's function (NEGF) techniques to calculate electronic currents and elucidate their transport properties at the atomic scale. The spin Hall effect is explained and its application to the emerging field of spintronics – where an electron's spin as well as its charge is utilised – is discussed. Topological dynamics and gauge potential are introduced with the relevant mathematics, and their application in nanoelectronic systems is explained. Graphene, one of the most promising carbon-based nanostructures for nanoelectronics, is also explored. - Begins with an overview of the mathematics and quantum mechanics pertaining to nanoscale electronics - Encompasses quantum electronics, spintronics, Hall effects, carbon and graphene electronics, and topological physics in nanoscale devices - Comprehensively introduces topological dynamics and gauge potential with the relevant mathematics, and extensively discusses their application in nanoelectronic systems

Quantum Nanoelectronics

Quantum Nanoelectronics
Author :
Publisher : John Wiley & Sons
Total Pages : 473
Release :
ISBN-10 : 9783527665389
ISBN-13 : 3527665382
Rating : 4/5 (89 Downloads)

Synopsis Quantum Nanoelectronics by : Edward L. Wolf

A tutorial coverage of electronic technology, starting from the basics of condensed matter and quantum physics. Experienced author Ed Wolf presents established and novel devices like Field Effect and Single Electron Transistors, and leads the reader up to applications in data storage, quantum computing, and energy harvesting. Intended to be self-contained for students with two years of calculus-based college physics, with corresponding fundamental knowledge in mathematics, computing and chemistry.

Introduction to Microelectronics to Nanoelectronics

Introduction to Microelectronics to Nanoelectronics
Author :
Publisher : CRC Press
Total Pages : 373
Release :
ISBN-10 : 9781000223071
ISBN-13 : 1000223078
Rating : 4/5 (71 Downloads)

Synopsis Introduction to Microelectronics to Nanoelectronics by : Manoj Kumar Majumder

Focussing on micro- and nanoelectronics design and technology, this book provides thorough analysis and demonstration, starting from semiconductor devices to VLSI fabrication, designing (analog and digital), on-chip interconnect modeling culminating with emerging non-silicon/ nano devices. It gives detailed description of both theoretical as well as industry standard HSPICE, Verilog, Cadence simulation based real-time modeling approach with focus on fabrication of bulk and nano-devices. Each chapter of this proposed title starts with a brief introduction of the presented topic and ends with a summary indicating the futuristic aspect including practice questions. Aimed at researchers and senior undergraduate/graduate students in electrical and electronics engineering, microelectronics, nanoelectronics and nanotechnology, this book: Provides broad and comprehensive coverage from Microelectronics to Nanoelectronics including design in analog and digital electronics. Includes HDL, and VLSI design going into the nanoelectronics arena. Discusses devices, circuit analysis, design methodology, and real-time simulation based on industry standard HSPICE tool. Explores emerging devices such as FinFETs, Tunnel FETs (TFETs) and CNTFETs including their circuit co-designing. Covers real time illustration using industry standard Verilog, Cadence and Synopsys simulations.

Introductory Quantum Mechanics for Semiconductor Nanotechnology

Introductory Quantum Mechanics for Semiconductor Nanotechnology
Author :
Publisher : John Wiley & Sons
Total Pages : 469
Release :
ISBN-10 : 9783527409754
ISBN-13 : 3527409750
Rating : 4/5 (54 Downloads)

Synopsis Introductory Quantum Mechanics for Semiconductor Nanotechnology by : Dae Mann Kim

The result of the nano education project run by the Korean Nano Technology Initiative, this has been recommended for use as official textbook by the Korean Nanotechnology Research Society. The author is highly experienced in teaching both physics and engineering in academia and industry, and naturally adopts an interdisciplinary approach here. He is short on formulations but long on applications, allowing students to understand the essential workings of quantum mechanics without spending too much time covering the wide realms of physics. He takes care to provide sufficient technical background and motivation for students to pursue further studies of advanced quantum mechanics and stresses the importance of translating quantum insights into useful and tangible innovations and inventions. As such, this is the only work to cover semiconductor nanotechnology from the perspective of introductory quantum mechanics, with applications including mainstream semiconductor technologies as well as (nano)devices, ranging from photodetectors, laser diodes, and solar cells to transistors and Schottky contacts. Problems are also provided to test the reader's understanding and supplementary material available includes working presentation files, solutions and instructors manuals.

Nanophysics and Nanotechnology

Nanophysics and Nanotechnology
Author :
Publisher : John Wiley & Sons
Total Pages : 336
Release :
ISBN-10 : 9783527684182
ISBN-13 : 3527684182
Rating : 4/5 (82 Downloads)

Synopsis Nanophysics and Nanotechnology by : Edward L. Wolf

Long awaited new edition of this highly successful textbook, provides once more a unique introduction to the concepts, techniques and applications of nanoscale systems by covering its entire spectrum up to recent findings on graphene.

Introduction to Nanoelectronics (Journey from Micro to Nano)

Introduction to Nanoelectronics (Journey from Micro to Nano)
Author :
Publisher : Shineeks Publishers
Total Pages : 91
Release :
ISBN-10 : 9781632789273
ISBN-13 : 1632789272
Rating : 4/5 (73 Downloads)

Synopsis Introduction to Nanoelectronics (Journey from Micro to Nano) by : Dr. Prashant Mani

The book is about the fundamental and research-based outcome of Semiconductor Device development in Electronics. The continuous shrinking of the physical size of devices is the main reason for high-density chips. As the density increases the complex system can be made in a single chip. The book covers silicon-based technology requirements. The surround gate structure, pocket-based devices, basics of SOI MOSFET, and technology are also covered in this book. The Ultra-thin fully depleted MOSFET devices and their characteristics are taken into account. The device journey from Micro to Nano can not be complete without nanoscale devices. Here in the book, the basics of NANOSCALE DEVICES are presented. The device is dedicated to beginners in the field of Semiconductor Devices.

The Physics of Nanoelectronics

The Physics of Nanoelectronics
Author :
Publisher : OUP Oxford
Total Pages : 296
Release :
ISBN-10 : 9780191654466
ISBN-13 : 0191654469
Rating : 4/5 (66 Downloads)

Synopsis The Physics of Nanoelectronics by : Tero T. Heikkilä

Advances in nanotechnology have allowed physicists and engineers to miniaturize electronic structures to the limit where finite-size related phenomena start to impact their properties. This book discusses such phenomena and models made for their description. The book starts from the semiclassical description of nonequilibrium effects, details the scattering theory used for quantum transport calculations, and explains the main interference effects. It also describes how to treat fluctuations and correlations, how interactions affect transport through small islands, and how superconductivity modifies these effects. The last two chapters describe new emerging fields related with graphene and nanoelectromechanics. The focus of the book is on the phenomena rather than formalism, but the book still explains in detail the main models constructed for these phenomena. It also introduces a number of electronic devices, including the single-electron transistor, the superconducting tunnel junction refrigerator, and the superconducting quantum bit.