Introduction To Symplectic Topology
Download Introduction To Symplectic Topology full books in PDF, epub, and Kindle. Read online free Introduction To Symplectic Topology ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Dusa McDuff |
Publisher |
: Oxford University Press |
Total Pages |
: 637 |
Release |
: 2017 |
ISBN-10 |
: 9780198794899 |
ISBN-13 |
: 0198794894 |
Rating |
: 4/5 (99 Downloads) |
Synopsis Introduction to Symplectic Topology by : Dusa McDuff
Over the last number of years powerful new methods in analysis and topology have led to the development of the modern global theory of symplectic topology, including several striking and important results. This new third edition of a classic book in the feild includes updates and new material to bring the material right up-to-date.
Author |
: Ana Cannas da Silva |
Publisher |
: Springer |
Total Pages |
: 240 |
Release |
: 2004-10-27 |
ISBN-10 |
: 9783540453307 |
ISBN-13 |
: 354045330X |
Rating |
: 4/5 (07 Downloads) |
Synopsis Lectures on Symplectic Geometry by : Ana Cannas da Silva
The goal of these notes is to provide a fast introduction to symplectic geometry for graduate students with some knowledge of differential geometry, de Rham theory and classical Lie groups. This text addresses symplectomorphisms, local forms, contact manifolds, compatible almost complex structures, Kaehler manifolds, hamiltonian mechanics, moment maps, symplectic reduction and symplectic toric manifolds. It contains guided problems, called homework, designed to complement the exposition or extend the reader's understanding. There are by now excellent references on symplectic geometry, a subset of which is in the bibliography of this book. However, the most efficient introduction to a subject is often a short elementary treatment, and these notes attempt to serve that purpose. This text provides a taste of areas of current research and will prepare the reader to explore recent papers and extensive books on symplectic geometry where the pace is much faster. For this reprint numerous corrections and clarifications have been made, and the layout has been improved.
Author |
: Dusa McDuff |
Publisher |
: Oxford University Press |
Total Pages |
: 500 |
Release |
: 1998 |
ISBN-10 |
: 0198504519 |
ISBN-13 |
: 9780198504511 |
Rating |
: 4/5 (19 Downloads) |
Synopsis Introduction to Symplectic Topology by : Dusa McDuff
This first edition of this book quickly became an established text in this fast-developing branch of mathematics. This second edition has been significantly revised and expanded. It includes a section on new developments and an expanded discussion of Taubes' and Donaldson's recent results.
Author |
: Rolf Berndt |
Publisher |
: American Mathematical Soc. |
Total Pages |
: 226 |
Release |
: 2001 |
ISBN-10 |
: 0821820567 |
ISBN-13 |
: 9780821820568 |
Rating |
: 4/5 (67 Downloads) |
Synopsis An Introduction to Symplectic Geometry by : Rolf Berndt
Symplectic geometry is a central topic of current research in mathematics. Indeed, symplectic methods are key ingredients in the study of dynamical systems, differential equations, algebraic geometry, topology, mathematical physics and representations of Lie groups. This book is a true introduction to symplectic geometry, assuming only a general background in analysis and familiarity with linear algebra. It starts with the basics of the geometry of symplectic vector spaces. Then, symplectic manifolds are defined and explored. In addition to the essential classic results, such as Darboux's theorem, more recent results and ideas are also included here, such as symplectic capacity and pseudoholomorphic curves. These ideas have revolutionized the subject. The main examples of symplectic manifolds are given, including the cotangent bundle, Kähler manifolds, and coadjoint orbits. Further principal ideas are carefully examined, such as Hamiltonian vector fields, the Poisson bracket, and connections with contact manifolds. Berndt describes some of the close connections between symplectic geometry and mathematical physics in the last two chapters of the book. In particular, the moment map is defined and explored, both mathematically and in its relation to physics. He also introduces symplectic reduction, which is an important tool for reducing the number of variables in a physical system and for constructing new symplectic manifolds from old. The final chapter is on quantization, which uses symplectic methods to take classical mechanics to quantum mechanics. This section includes a discussion of the Heisenberg group and the Weil (or metaplectic) representation of the symplectic group. Several appendices provide background material on vector bundles, on cohomology, and on Lie groups and Lie algebras and their representations. Berndt's presentation of symplectic geometry is a clear and concise introduction to the major methods and applications of the subject, and requires only a minimum of prerequisites. This book would be an excellent text for a graduate course or as a source for anyone who wishes to learn about symplectic geometry.
Author |
: Yakov Eliashberg |
Publisher |
: American Mathematical Soc. |
Total Pages |
: 452 |
Release |
: 2004 |
ISBN-10 |
: 0821886894 |
ISBN-13 |
: 9780821886892 |
Rating |
: 4/5 (94 Downloads) |
Synopsis Symplectic Geometry and Topology by : Yakov Eliashberg
Symplectic geometry has its origins as a geometric language for classical mechanics. But it has recently exploded into an independent field interconnected with many other areas of mathematics and physics. The goal of the IAS/Park City Mathematics Institute Graduate Summer School on Symplectic Geometry and Topology was to give an intensive introduction to these exciting areas of current research. Included in this proceedings are lecture notes from the following courses: Introductionto Symplectic Topology by D. McDuff; Holomorphic Curves and Dynamics in Dimension Three by H. Hofer; An Introduction to the Seiberg-Witten Equations on Symplectic Manifolds by C. Taubes; Lectures on Floer Homology by D. Salamon; A Tutorial on Quantum Cohomology by A. Givental; Euler Characteristicsand Lagrangian Intersections by R. MacPherson; Hamiltonian Group Actions and Symplectic Reduction by L. Jeffrey; and Mechanics: Symmetry and Dynamics by J. Marsden. Information for our distributors: Titles in this series are copublished with the Institute for Advanced Study/Park City Mathematics Institute. Members of the Mathematical Association of America (MAA) and the National Council of Teachers of Mathematics (NCTM) receive a 20% discount from list price.
Author |
: Dusa McDuff |
Publisher |
: American Mathematical Soc. |
Total Pages |
: 744 |
Release |
: 2012 |
ISBN-10 |
: 9780821887462 |
ISBN-13 |
: 0821887467 |
Rating |
: 4/5 (62 Downloads) |
Synopsis J-holomorphic Curves and Symplectic Topology by : Dusa McDuff
The main goal of this book is to establish the fundamental theorems of the subject in full and rigourous detail. In particular, the book contains complete proofs of Gromov's compactness theorem for spheres, of the gluing theorem for spheres, and of the associatively of quantum multiplication in the semipositive case. The book can also serve as an introduction to current work in symplectic topology.
Author |
: John W. Morgan |
Publisher |
: American Mathematical Soc. |
Total Pages |
: 317 |
Release |
: 2019-04-12 |
ISBN-10 |
: 9781470450144 |
ISBN-13 |
: 1470450143 |
Rating |
: 4/5 (44 Downloads) |
Synopsis Virtual Fundamental Cycles in Symplectic Topology by : John W. Morgan
The method of using the moduli space of pseudo-holomorphic curves on a symplectic manifold was introduced by Mikhail Gromov in 1985. From the appearance of Gromov's original paper until today this approach has been the most important tool in global symplectic geometry. To produce numerical invariants of these manifolds using this method requires constructing a fundamental cycle associated with moduli spaces. This volume brings together three approaches to constructing the “virtual” fundamental cycle for the moduli space of pseudo-holomorphic curves. All approaches are based on the idea of local Kuranishi charts for the moduli space. Workers in the field will get a comprehensive understanding of the details of these constructions and the assumptions under which they can be made. These techniques and results will be essential in further applications of this approach to producing invariants of symplectic manifolds.
Author |
: Jean-Louis Koszul |
Publisher |
: Springer |
Total Pages |
: 166 |
Release |
: 2019-04-15 |
ISBN-10 |
: 9789811339875 |
ISBN-13 |
: 9811339872 |
Rating |
: 4/5 (75 Downloads) |
Synopsis Introduction to Symplectic Geometry by : Jean-Louis Koszul
This introductory book offers a unique and unified overview of symplectic geometry, highlighting the differential properties of symplectic manifolds. It consists of six chapters: Some Algebra Basics, Symplectic Manifolds, Cotangent Bundles, Symplectic G-spaces, Poisson Manifolds, and A Graded Case, concluding with a discussion of the differential properties of graded symplectic manifolds of dimensions (0,n). It is a useful reference resource for students and researchers interested in geometry, group theory, analysis and differential equations.This book is also inspiring in the emerging field of Geometric Science of Information, in particular the chapter on Symplectic G-spaces, where Jean-Louis Koszul develops Jean-Marie Souriau's tools related to the non-equivariant case of co-adjoint action on Souriau’s moment map through Souriau’s Cocycle, opening the door to Lie Group Machine Learning with Souriau-Fisher metric.
Author |
: Franco Cardin |
Publisher |
: Springer |
Total Pages |
: 237 |
Release |
: 2014-12-01 |
ISBN-10 |
: 9783319110264 |
ISBN-13 |
: 3319110268 |
Rating |
: 4/5 (64 Downloads) |
Synopsis Elementary Symplectic Topology and Mechanics by : Franco Cardin
This is a short tract on the essentials of differential and symplectic geometry together with a basic introduction to several applications of this rich framework: analytical mechanics, the calculus of variations, conjugate points & Morse index, and other physical topics. A central feature is the systematic utilization of Lagrangian submanifolds and their Maslov-Hörmander generating functions. Following this line of thought, first introduced by Wlodemierz Tulczyjew, geometric solutions of Hamilton-Jacobi equations, Hamiltonian vector fields and canonical transformations are described by suitable Lagrangian submanifolds belonging to distinct well-defined symplectic structures. This unified point of view has been particularly fruitful in symplectic topology, which is the modern Hamiltonian environment for the calculus of variations, yielding sharp sufficient existence conditions. This line of investigation was initiated by Claude Viterbo in 1992; here, some primary consequences of this theory are exposed in Chapter 8: aspects of Poincaré's last geometric theorem and the Arnol'd conjecture are introduced. In Chapter 7 elements of the global asymptotic treatment of the highly oscillating integrals for the Schrödinger equation are discussed: as is well known, this eventually leads to the theory of Fourier Integral Operators. This short handbook is directed toward graduate students in Mathematics and Physics and to all those who desire a quick introduction to these beautiful subjects.
Author |
: Frédéric Bourgeois |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 538 |
Release |
: 2014-03-10 |
ISBN-10 |
: 9783319020365 |
ISBN-13 |
: 3319020366 |
Rating |
: 4/5 (65 Downloads) |
Synopsis Contact and Symplectic Topology by : Frédéric Bourgeois
Symplectic and contact geometry naturally emerged from the mathematical description of classical physics. The discovery of new rigidity phenomena and properties satisfied by these geometric structures launched a new research field worldwide. The intense activity of many European research groups in this field is reflected by the ESF Research Networking Programme "Contact And Symplectic Topology" (CAST). The lectures of the Summer School in Nantes (June 2011) and of the CAST Summer School in Budapest (July 2012) provide a nice panorama of many aspects of the present status of contact and symplectic topology. The notes of the minicourses offer a gentle introduction to topics which have developed in an amazing speed in the recent past. These topics include 3-dimensional and higher dimensional contact topology, Fukaya categories, asymptotically holomorphic methods in contact topology, bordered Floer homology, embedded contact homology, and flexibility results for Stein manifolds.