Introduction to Symplectic Dirac Operators

Introduction to Symplectic Dirac Operators
Author :
Publisher : Springer
Total Pages : 131
Release :
ISBN-10 : 9783540334217
ISBN-13 : 3540334211
Rating : 4/5 (17 Downloads)

Synopsis Introduction to Symplectic Dirac Operators by : Katharina Habermann

This volume is the first one that gives a systematic and self-contained introduction to the theory of symplectic Dirac operators and reflects the current state of the subject. At the same time, it is intended to establish the idea that symplectic spin geometry and symplectic Dirac operators may give valuable tools in symplectic geometry and symplectic topology, which have become important fields and very active areas of mathematical research.

Clifford Analysis and Its Applications

Clifford Analysis and Its Applications
Author :
Publisher : Springer Science & Business Media
Total Pages : 440
Release :
ISBN-10 : 0792370449
ISBN-13 : 9780792370444
Rating : 4/5 (49 Downloads)

Synopsis Clifford Analysis and Its Applications by : F. Brackx

In its traditional form, Clifford analysis provides the function theory for solutions of the Dirac equation. From the beginning, however, the theory was used and applied to problems in other fields of mathematics, numerical analysis, and mathematical physics. recently, the theory has enlarged its scope considerably by incorporating geometrical methods from global analysis on manifolds and methods from representation theory. New, interesting branches of the theory are based on conformally invariant, first-order systems other than the Dirac equation, or systems that are invariant with respect to a group other than the conformal group. This book represents an up-to-date review of Clifford analysis in its present form, its applications, and directions for future research. Readership: Mathematicians and theoretical physicists interested in Clifford analysis itself, or in its applications to other fields.

The Heat Kernel Lefschetz Fixed Point Formula for the Spin-c Dirac Operator

The Heat Kernel Lefschetz Fixed Point Formula for the Spin-c Dirac Operator
Author :
Publisher : Springer Science & Business Media
Total Pages : 245
Release :
ISBN-10 : 9781461253440
ISBN-13 : 1461253446
Rating : 4/5 (40 Downloads)

Synopsis The Heat Kernel Lefschetz Fixed Point Formula for the Spin-c Dirac Operator by : J.J. Duistermaat

When visiting M.I.T. for two weeks in October 1994, Victor Guillemin made me enthusiastic about a problem in symplectic geometry which involved the use of the so-called spin-c Dirac operator. Back in Berkeley, where I had l spent a sabbatical semester , I tried to understand the basic facts about this operator: its definition, the main theorems about it, and their proofs. This book is an outgrowth of the notes in which I worked this out. For me this was a great learning experience because of the many beautiful mathematical structures which are involved. I thank the Editorial Board of Birkhauser, especially Haim Brezis, for sug gesting the publication of these notes as a book. I am also very grateful for the suggestions by the referees, which have led to substantial improvements in the presentation. Finally I would like to express special thanks to Ann Kostant for her help and her prodding me, in her charming way, into the right direction. J.J. Duistermaat Utrecht, October 16, 1995.

Dirac Operators in Representation Theory

Dirac Operators in Representation Theory
Author :
Publisher : Springer Science & Business Media
Total Pages : 205
Release :
ISBN-10 : 9780817644932
ISBN-13 : 0817644938
Rating : 4/5 (32 Downloads)

Synopsis Dirac Operators in Representation Theory by : Jing-Song Huang

This book presents a comprehensive treatment of important new ideas on Dirac operators and Dirac cohomology. Using Dirac operators as a unifying theme, the authors demonstrate how some of the most important results in representation theory fit together when viewed from this perspective. The book is an excellent contribution to the mathematical literature of representation theory, and this self-contained exposition offers a systematic examination and panoramic view of the subject. The material will be of interest to researchers and graduate students in representation theory, differential geometry, and physics.

Lectures on Symplectic Geometry

Lectures on Symplectic Geometry
Author :
Publisher : Springer
Total Pages : 240
Release :
ISBN-10 : 9783540453307
ISBN-13 : 354045330X
Rating : 4/5 (07 Downloads)

Synopsis Lectures on Symplectic Geometry by : Ana Cannas da Silva

The goal of these notes is to provide a fast introduction to symplectic geometry for graduate students with some knowledge of differential geometry, de Rham theory and classical Lie groups. This text addresses symplectomorphisms, local forms, contact manifolds, compatible almost complex structures, Kaehler manifolds, hamiltonian mechanics, moment maps, symplectic reduction and symplectic toric manifolds. It contains guided problems, called homework, designed to complement the exposition or extend the reader's understanding. There are by now excellent references on symplectic geometry, a subset of which is in the bibliography of this book. However, the most efficient introduction to a subject is often a short elementary treatment, and these notes attempt to serve that purpose. This text provides a taste of areas of current research and will prepare the reader to explore recent papers and extensive books on symplectic geometry where the pace is much faster. For this reprint numerous corrections and clarifications have been made, and the layout has been improved.

Differential Geometry and Lie Groups for Physicists

Differential Geometry and Lie Groups for Physicists
Author :
Publisher : Cambridge University Press
Total Pages : 11
Release :
ISBN-10 : 9781139458030
ISBN-13 : 1139458035
Rating : 4/5 (30 Downloads)

Synopsis Differential Geometry and Lie Groups for Physicists by : Marián Fecko

Covering subjects including manifolds, tensor fields, spinors, and differential forms, this textbook introduces geometrical topics useful in modern theoretical physics and mathematics. It develops understanding through over 1000 short exercises, and is suitable for advanced undergraduate or graduate courses in physics, mathematics and engineering.

Modules over Operads and Functors

Modules over Operads and Functors
Author :
Publisher : Springer
Total Pages : 304
Release :
ISBN-10 : 9783540890560
ISBN-13 : 3540890564
Rating : 4/5 (60 Downloads)

Synopsis Modules over Operads and Functors by : Benoit Fresse

This monograph presents a review of the basis of operad theory. It also studies structures of modules over operads as a new device to model functors between categories of algebras as effectively as operads model categories of algebras.

Geometric Properties of Banach Spaces and Nonlinear Iterations

Geometric Properties of Banach Spaces and Nonlinear Iterations
Author :
Publisher : Springer Science & Business Media
Total Pages : 337
Release :
ISBN-10 : 9781848821897
ISBN-13 : 1848821891
Rating : 4/5 (97 Downloads)

Synopsis Geometric Properties of Banach Spaces and Nonlinear Iterations by : Charles Chidume

The contents of this monograph fall within the general area of nonlinear functional analysis and applications. We focus on an important topic within this area: geometric properties of Banach spaces and nonlinear iterations, a topic of intensive research e?orts, especially within the past 30 years, or so. In this theory, some geometric properties of Banach spaces play a crucial role. In the ?rst part of the monograph, we expose these geometric properties most of which are well known. As is well known, among all in?nite dim- sional Banach spaces, Hilbert spaces have the nicest geometric properties. The availability of the inner product, the fact that the proximity map or nearest point map of a real Hilbert space H onto a closed convex subset K of H is Lipschitzian with constant 1, and the following two identities 2 2 2 ||x+y|| =||x|| +2 x,y +||y|| , (?) 2 2 2 2 ||?x+(1??)y|| = ?||x|| +(1??)||y|| ??(1??)||x?y|| , (??) which hold for all x,y? H, are some of the geometric properties that char- terize inner product spaces and also make certain problems posed in Hilbert spaces more manageable than those in general Banach spaces. However, as has been rightly observed by M. Hazewinkel, “... many, and probably most, mathematical objects and models do not naturally live in Hilbert spaces”. Consequently,toextendsomeoftheHilbertspacetechniquestomoregeneral Banach spaces, analogues of the identities (?) and (??) have to be developed.

Harmonic Analysis on Spaces of Homogeneous Type

Harmonic Analysis on Spaces of Homogeneous Type
Author :
Publisher : Springer
Total Pages : 167
Release :
ISBN-10 : 9783540887454
ISBN-13 : 3540887458
Rating : 4/5 (54 Downloads)

Synopsis Harmonic Analysis on Spaces of Homogeneous Type by : Donggao Deng

This book could have been entitled “Analysis and Geometry.” The authors are addressing the following issue: Is it possible to perform some harmonic analysis on a set? Harmonic analysis on groups has a long tradition. Here we are given a metric set X with a (positive) Borel measure ? and we would like to construct some algorithms which in the classical setting rely on the Fourier transformation. Needless to say, the Fourier transformation does not exist on an arbitrary metric set. This endeavor is not a revolution. It is a continuation of a line of research whichwasinitiated,acenturyago,withtwofundamentalpapersthatIwould like to discuss brie?y. The ?rst paper is the doctoral dissertation of Alfred Haar, which was submitted at to University of Gottingen ̈ in July 1907. At that time it was known that the Fourier series expansion of a continuous function may diverge at a given point. Haar wanted to know if this phenomenon happens for every 2 orthonormal basis of L [0,1]. He answered this question by constructing an orthonormal basis (today known as the Haar basis) with the property that the expansion (in this basis) of any continuous function uniformly converges to that function.

Séminaire de Probabilités XLIII

Séminaire de Probabilités XLIII
Author :
Publisher : Springer
Total Pages : 511
Release :
ISBN-10 : 9783642152177
ISBN-13 : 3642152171
Rating : 4/5 (77 Downloads)

Synopsis Séminaire de Probabilités XLIII by : Catherine Donati Martin

This is a new volume of the Séminaire de Probabilités which is now in its 43rd year. Following the tradition, this volume contains about 20 original research and survey articles on topics related to stochastic analysis. It contains an advanced course of J. Picard on the representation formulae for fractional Brownian motion. The regular chapters cover a wide range of themes, such as stochastic calculus and stochastic differential equations, stochastic differential geometry, filtrations, analysis on Wiener space, random matrices and free probability, as well as mathematical finance. Some of the contributions were presented at the Journées de Probabilités held in Poitiers in June 2009.