Introduction to Stochastic Dynamic Programming

Introduction to Stochastic Dynamic Programming
Author :
Publisher :
Total Pages : 192
Release :
ISBN-10 : UOM:39015015172466
ISBN-13 :
Rating : 4/5 (66 Downloads)

Synopsis Introduction to Stochastic Dynamic Programming by : Sheldon M. Ross

Introduction to Stochastic Dynamic Programming presents the basic theory and examines the scope of applications of stochastic dynamic programming.

Introduction to Stochastic Programming

Introduction to Stochastic Programming
Author :
Publisher : Springer Science & Business Media
Total Pages : 427
Release :
ISBN-10 : 9780387226187
ISBN-13 : 0387226184
Rating : 4/5 (87 Downloads)

Synopsis Introduction to Stochastic Programming by : John R. Birge

This rapidly developing field encompasses many disciplines including operations research, mathematics, and probability. Conversely, it is being applied in a wide variety of subjects ranging from agriculture to financial planning and from industrial engineering to computer networks. This textbook provides a first course in stochastic programming suitable for students with a basic knowledge of linear programming, elementary analysis, and probability. The authors present a broad overview of the main themes and methods of the subject, thus helping students develop an intuition for how to model uncertainty into mathematical problems, what uncertainty changes bring to the decision process, and what techniques help to manage uncertainty in solving the problems. The early chapters introduce some worked examples of stochastic programming, demonstrate how a stochastic model is formally built, develop the properties of stochastic programs and the basic solution techniques used to solve them. The book then goes on to cover approximation and sampling techniques and is rounded off by an in-depth case study. A well-paced and wide-ranging introduction to this subject.

Stochastic Dynamic Programming and the Control of Queueing Systems

Stochastic Dynamic Programming and the Control of Queueing Systems
Author :
Publisher : John Wiley & Sons
Total Pages : 360
Release :
ISBN-10 : 0471161209
ISBN-13 : 9780471161202
Rating : 4/5 (09 Downloads)

Synopsis Stochastic Dynamic Programming and the Control of Queueing Systems by : Linn I. Sennott

Eine Zusammenstellung der Grundlagen der stochastischen dynamischen Programmierung (auch als Markov-Entscheidungsprozeß oder Markov-Ketten bekannt), deren Schwerpunkt auf der Anwendung der Queueing-Theorie liegt. Theoretische und programmtechnische Aspekte werden sinnvoll verknüpft; insgesamt neun numerische Programme zur Queueing-Steuerung werden im Text ausführlich diskutiert. Ergänzendes Material kann vom zugehörigen ftp-Server abgerufen werden. (12/98)

Markov Decision Processes

Markov Decision Processes
Author :
Publisher : John Wiley & Sons
Total Pages : 544
Release :
ISBN-10 : 9781118625873
ISBN-13 : 1118625870
Rating : 4/5 (73 Downloads)

Synopsis Markov Decision Processes by : Martin L. Puterman

The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. "This text is unique in bringing together so many results hitherto found only in part in other texts and papers. . . . The text is fairly self-contained, inclusive of some basic mathematical results needed, and provides a rich diet of examples, applications, and exercises. The bibliographical material at the end of each chapter is excellent, not only from a historical perspective, but because it is valuable for researchers in acquiring a good perspective of the MDP research potential." —Zentralblatt fur Mathematik ". . . it is of great value to advanced-level students, researchers, and professional practitioners of this field to have now a complete volume (with more than 600 pages) devoted to this topic. . . . Markov Decision Processes: Discrete Stochastic Dynamic Programming represents an up-to-date, unified, and rigorous treatment of theoretical and computational aspects of discrete-time Markov decision processes." —Journal of the American Statistical Association

Stochastic Control Theory

Stochastic Control Theory
Author :
Publisher : Springer
Total Pages : 263
Release :
ISBN-10 : 9784431551232
ISBN-13 : 4431551239
Rating : 4/5 (32 Downloads)

Synopsis Stochastic Control Theory by : Makiko Nisio

This book offers a systematic introduction to the optimal stochastic control theory via the dynamic programming principle, which is a powerful tool to analyze control problems. First we consider completely observable control problems with finite horizons. Using a time discretization we construct a nonlinear semigroup related to the dynamic programming principle (DPP), whose generator provides the Hamilton–Jacobi–Bellman (HJB) equation, and we characterize the value function via the nonlinear semigroup, besides the viscosity solution theory. When we control not only the dynamics of a system but also the terminal time of its evolution, control-stopping problems arise. This problem is treated in the same frameworks, via the nonlinear semigroup. Its results are applicable to the American option price problem. Zero-sum two-player time-homogeneous stochastic differential games and viscosity solutions of the Isaacs equations arising from such games are studied via a nonlinear semigroup related to DPP (the min-max principle, to be precise). Using semi-discretization arguments, we construct the nonlinear semigroups whose generators provide lower and upper Isaacs equations. Concerning partially observable control problems, we refer to stochastic parabolic equations driven by colored Wiener noises, in particular, the Zakai equation. The existence and uniqueness of solutions and regularities as well as Itô's formula are stated. A control problem for the Zakai equations has a nonlinear semigroup whose generator provides the HJB equation on a Banach space. The value function turns out to be a unique viscosity solution for the HJB equation under mild conditions. This edition provides a more generalized treatment of the topic than does the earlier book Lectures on Stochastic Control Theory (ISI Lecture Notes 9), where time-homogeneous cases are dealt with. Here, for finite time-horizon control problems, DPP was formulated as a one-parameter nonlinear semigroup, whose generator provides the HJB equation, by using a time-discretization method. The semigroup corresponds to the value function and is characterized as the envelope of Markovian transition semigroups of responses for constant control processes. Besides finite time-horizon controls, the book discusses control-stopping problems in the same frameworks.

Approximate Dynamic Programming

Approximate Dynamic Programming
Author :
Publisher : John Wiley & Sons
Total Pages : 487
Release :
ISBN-10 : 9780470182956
ISBN-13 : 0470182954
Rating : 4/5 (56 Downloads)

Synopsis Approximate Dynamic Programming by : Warren B. Powell

A complete and accessible introduction to the real-world applications of approximate dynamic programming With the growing levels of sophistication in modern-day operations, it is vital for practitioners to understand how to approach, model, and solve complex industrial problems. Approximate Dynamic Programming is a result of the author's decades of experience working in large industrial settings to develop practical and high-quality solutions to problems that involve making decisions in the presence of uncertainty. This groundbreaking book uniquely integrates four distinct disciplines—Markov design processes, mathematical programming, simulation, and statistics—to demonstrate how to successfully model and solve a wide range of real-life problems using the techniques of approximate dynamic programming (ADP). The reader is introduced to the three curses of dimensionality that impact complex problems and is also shown how the post-decision state variable allows for the use of classical algorithmic strategies from operations research to treat complex stochastic optimization problems. Designed as an introduction and assuming no prior training in dynamic programming of any form, Approximate Dynamic Programming contains dozens of algorithms that are intended to serve as a starting point in the design of practical solutions for real problems. The book provides detailed coverage of implementation challenges including: modeling complex sequential decision processes under uncertainty, identifying robust policies, designing and estimating value function approximations, choosing effective stepsize rules, and resolving convergence issues. With a focus on modeling and algorithms in conjunction with the language of mainstream operations research, artificial intelligence, and control theory, Approximate Dynamic Programming: Models complex, high-dimensional problems in a natural and practical way, which draws on years of industrial projects Introduces and emphasizes the power of estimating a value function around the post-decision state, allowing solution algorithms to be broken down into three fundamental steps: classical simulation, classical optimization, and classical statistics Presents a thorough discussion of recursive estimation, including fundamental theory and a number of issues that arise in the development of practical algorithms Offers a variety of methods for approximating dynamic programs that have appeared in previous literature, but that have never been presented in the coherent format of a book Motivated by examples from modern-day operations research, Approximate Dynamic Programming is an accessible introduction to dynamic modeling and is also a valuable guide for the development of high-quality solutions to problems that exist in operations research and engineering. The clear and precise presentation of the material makes this an appropriate text for advanced undergraduate and beginning graduate courses, while also serving as a reference for researchers and practitioners. A companion Web site is available for readers, which includes additional exercises, solutions to exercises, and data sets to reinforce the book's main concepts.

Introduction to Stochastic Dynamic Programming

Introduction to Stochastic Dynamic Programming
Author :
Publisher : Academic Press
Total Pages : 179
Release :
ISBN-10 : 9781483269092
ISBN-13 : 1483269094
Rating : 4/5 (92 Downloads)

Synopsis Introduction to Stochastic Dynamic Programming by : Sheldon M. Ross

Introduction to Stochastic Dynamic Programming presents the basic theory and examines the scope of applications of stochastic dynamic programming. The book begins with a chapter on various finite-stage models, illustrating the wide range of applications of stochastic dynamic programming. Subsequent chapters study infinite-stage models: discounting future returns, minimizing nonnegative costs, maximizing nonnegative returns, and maximizing the long-run average return. Each of these chapters first considers whether an optimal policy need exist—providing counterexamples where appropriate—and then presents methods for obtaining such policies when they do. In addition, general areas of application are presented. The final two chapters are concerned with more specialized models. These include stochastic scheduling models and a type of process known as a multiproject bandit. The mathematical prerequisites for this text are relatively few. No prior knowledge of dynamic programming is assumed and only a moderate familiarity with probability— including the use of conditional expectation—is necessary.

Stochastic Optimal Control in Infinite Dimension

Stochastic Optimal Control in Infinite Dimension
Author :
Publisher : Springer
Total Pages : 928
Release :
ISBN-10 : 9783319530673
ISBN-13 : 3319530674
Rating : 4/5 (73 Downloads)

Synopsis Stochastic Optimal Control in Infinite Dimension by : Giorgio Fabbri

Providing an introduction to stochastic optimal control in infinite dimension, this book gives a complete account of the theory of second-order HJB equations in infinite-dimensional Hilbert spaces, focusing on its applicability to associated stochastic optimal control problems. It features a general introduction to optimal stochastic control, including basic results (e.g. the dynamic programming principle) with proofs, and provides examples of applications. A complete and up-to-date exposition of the existing theory of viscosity solutions and regular solutions of second-order HJB equations in Hilbert spaces is given, together with an extensive survey of other methods, with a full bibliography. In particular, Chapter 6, written by M. Fuhrman and G. Tessitore, surveys the theory of regular solutions of HJB equations arising in infinite-dimensional stochastic control, via BSDEs. The book is of interest to both pure and applied researchers working in the control theory of stochastic PDEs, and in PDEs in infinite dimension. Readers from other fields who want to learn the basic theory will also find it useful. The prerequisites are: standard functional analysis, the theory of semigroups of operators and its use in the study of PDEs, some knowledge of the dynamic programming approach to stochastic optimal control problems in finite dimension, and the basics of stochastic analysis and stochastic equations in infinite-dimensional spaces.

Lectures on Stochastic Programming

Lectures on Stochastic Programming
Author :
Publisher : SIAM
Total Pages : 447
Release :
ISBN-10 : 9780898718751
ISBN-13 : 0898718759
Rating : 4/5 (51 Downloads)

Synopsis Lectures on Stochastic Programming by : Alexander Shapiro

Optimization problems involving stochastic models occur in almost all areas of science and engineering, such as telecommunications, medicine, and finance. Their existence compels a need for rigorous ways of formulating, analyzing, and solving such problems. This book focuses on optimization problems involving uncertain parameters and covers the theoretical foundations and recent advances in areas where stochastic models are available. Readers will find coverage of the basic concepts of modeling these problems, including recourse actions and the nonanticipativity principle. The book also includes the theory of two-stage and multistage stochastic programming problems; the current state of the theory on chance (probabilistic) constraints, including the structure of the problems, optimality theory, and duality; and statistical inference in and risk-averse approaches to stochastic programming.

Stochastic Optimization Models in Finance

Stochastic Optimization Models in Finance
Author :
Publisher : World Scientific
Total Pages : 756
Release :
ISBN-10 : 9789812568007
ISBN-13 : 981256800X
Rating : 4/5 (07 Downloads)

Synopsis Stochastic Optimization Models in Finance by : William T. Ziemba

A reprint of one of the classic volumes on portfolio theory and investment, this book has been used by the leading professors at universities such as Stanford, Berkeley, and Carnegie-Mellon. It contains five parts, each with a review of the literature and about 150 pages of computational and review exercises and further in-depth, challenging problems.Frequently referenced and highly usable, the material remains as fresh and relevant for a portfolio theory course as ever.