Introduction to Stochastic Analysis

Introduction to Stochastic Analysis
Author :
Publisher : John Wiley & Sons
Total Pages : 220
Release :
ISBN-10 : 9781118603246
ISBN-13 : 1118603249
Rating : 4/5 (46 Downloads)

Synopsis Introduction to Stochastic Analysis by : Vigirdas Mackevicius

This is an introduction to stochastic integration and stochastic differential equations written in an understandable way for a wide audience, from students of mathematics to practitioners in biology, chemistry, physics, and finances. The presentation is based on the naïve stochastic integration, rather than on abstract theories of measure and stochastic processes. The proofs are rather simple for practitioners and, at the same time, rather rigorous for mathematicians. Detailed application examples in natural sciences and finance are presented. Much attention is paid to simulation diffusion processes. The topics covered include Brownian motion; motivation of stochastic models with Brownian motion; Itô and Stratonovich stochastic integrals, Itô’s formula; stochastic differential equations (SDEs); solutions of SDEs as Markov processes; application examples in physical sciences and finance; simulation of solutions of SDEs (strong and weak approximations). Exercises with hints and/or solutions are also provided.

Introduction to Stochastic Analysis and Malliavin Calculus

Introduction to Stochastic Analysis and Malliavin Calculus
Author :
Publisher : Springer
Total Pages : 286
Release :
ISBN-10 : 9788876424991
ISBN-13 : 8876424997
Rating : 4/5 (91 Downloads)

Synopsis Introduction to Stochastic Analysis and Malliavin Calculus by : Giuseppe Da Prato

This volume presents an introductory course on differential stochastic equations and Malliavin calculus. The material of the book has grown out of a series of courses delivered at the Scuola Normale Superiore di Pisa (and also at the Trento and Funchal Universities) and has been refined over several years of teaching experience in the subject. The lectures are addressed to a reader who is familiar with basic notions of measure theory and functional analysis. The first part is devoted to the Gaussian measure in a separable Hilbert space, the Malliavin derivative, the construction of the Brownian motion and Itô's formula. The second part deals with differential stochastic equations and their connection with parabolic problems. The third part provides an introduction to the Malliavin calculus. Several applications are given, notably the Feynman-Kac, Girsanov and Clark-Ocone formulae, the Krylov-Bogoliubov and Von Neumann theorems. In this third edition several small improvements are added and a new section devoted to the differentiability of the Feynman-Kac semigroup is introduced. A considerable number of corrections and improvements have been made.

Introduction to Infinite Dimensional Stochastic Analysis

Introduction to Infinite Dimensional Stochastic Analysis
Author :
Publisher : Springer Science & Business Media
Total Pages : 308
Release :
ISBN-10 : 9789401141086
ISBN-13 : 9401141088
Rating : 4/5 (86 Downloads)

Synopsis Introduction to Infinite Dimensional Stochastic Analysis by : Zhi-yuan Huang

The infinite dimensional analysis as a branch of mathematical sciences was formed in the late 19th and early 20th centuries. Motivated by problems in mathematical physics, the first steps in this field were taken by V. Volterra, R. GateallX, P. Levy and M. Frechet, among others (see the preface to Levy[2]). Nevertheless, the most fruitful direction in this field is the infinite dimensional integration theory initiated by N. Wiener and A. N. Kolmogorov which is closely related to the developments of the theory of stochastic processes. It was Wiener who constructed for the first time in 1923 a probability measure on the space of all continuous functions (i. e. the Wiener measure) which provided an ideal math ematical model for Brownian motion. Then some important properties of Wiener integrals, especially the quasi-invariance of Gaussian measures, were discovered by R. Cameron and W. Martin[l, 2, 3]. In 1931, Kolmogorov[l] deduced a second partial differential equation for transition probabilities of Markov processes order with continuous trajectories (i. e. diffusion processes) and thus revealed the deep connection between theories of differential equations and stochastic processes. The stochastic analysis created by K. Ito (also independently by Gihman [1]) in the forties is essentially an infinitesimal analysis for trajectories of stochastic processes. By virtue of Ito's stochastic differential equations one can construct diffusion processes via direct probabilistic methods and treat them as function als of Brownian paths (i. e. the Wiener functionals).

Foundations of Stochastic Analysis

Foundations of Stochastic Analysis
Author :
Publisher : Courier Corporation
Total Pages : 322
Release :
ISBN-10 : 9780486481227
ISBN-13 : 0486481220
Rating : 4/5 (27 Downloads)

Synopsis Foundations of Stochastic Analysis by : M. M. Rao

Stochastic analysis involves the study of a process involving a randomly determined sequence of observations, each of which represents a sample of one element of probability distribution. This volume considers fundamental theories and contrasts the natural interplay between real and abstract methods. Starting with the introduction of the basic Kolmogorov-Bochner existence theorem, the text explores conditional expectations and probabilities as well as projective and direct limits. Subsequent chapters examine several aspects of discrete martingale theory, including applications to ergodic theory, likelihood ratios, and the Gaussian dichotomy theorem. Prerequisites include a standard measure theory course. No prior knowledge of probability is assumed; therefore, most of the results are proved in detail. Each chapter concludes with a problem section that features many hints and facts, including the most important results in information theory.

Stochastic Analysis

Stochastic Analysis
Author :
Publisher : American Mathematical Soc.
Total Pages : 202
Release :
ISBN-10 : 0821826263
ISBN-13 : 9780821826263
Rating : 4/5 (63 Downloads)

Synopsis Stochastic Analysis by : Ichirō Shigekawa

This book offers a concise introduction to stochastic analysis, particularly the Malliavin calculus. A detailed description is given of all technical tools necessary to describe the theory, such as the Wiener process, the Ornstein-Uhlenbeck process, and Sobolev spaces. Applications of stochastic cal

Introduction to Stochastic Integration

Introduction to Stochastic Integration
Author :
Publisher : Springer Science & Business Media
Total Pages : 292
Release :
ISBN-10 : 9781461495871
ISBN-13 : 1461495873
Rating : 4/5 (71 Downloads)

Synopsis Introduction to Stochastic Integration by : K.L. Chung

A highly readable introduction to stochastic integration and stochastic differential equations, this book combines developments of the basic theory with applications. It is written in a style suitable for the text of a graduate course in stochastic calculus, following a course in probability. Using the modern approach, the stochastic integral is defined for predictable integrands and local martingales; then It’s change of variable formula is developed for continuous martingales. Applications include a characterization of Brownian motion, Hermite polynomials of martingales, the Feynman–Kac functional and the Schrödinger equation. For Brownian motion, the topics of local time, reflected Brownian motion, and time change are discussed. New to the second edition are a discussion of the Cameron–Martin–Girsanov transformation and a final chapter which provides an introduction to stochastic differential equations, as well as many exercises for classroom use. This book will be a valuable resource to all mathematicians, statisticians, economists, and engineers employing the modern tools of stochastic analysis. The text also proves that stochastic integration has made an important impact on mathematical progress over the last decades and that stochastic calculus has become one of the most powerful tools in modern probability theory. —Journal of the American Statistical Association An attractive text...written in [a] lean and precise style...eminently readable. Especially pleasant are the care and attention devoted to details... A very fine book. —Mathematical Reviews

Option Theory with Stochastic Analysis

Option Theory with Stochastic Analysis
Author :
Publisher : Springer Science & Business Media
Total Pages : 172
Release :
ISBN-10 : 9783642187865
ISBN-13 : 3642187862
Rating : 4/5 (65 Downloads)

Synopsis Option Theory with Stochastic Analysis by : Fred Espen Benth

This is a very basic and accessible introduction to option pricing, invoking a minimum of stochastic analysis and requiring only basic mathematical skills. It covers the theory essential to the statistical modeling of stocks, pricing of derivatives with martingale theory, and computational finance including both finite-difference and Monte Carlo methods.

An Introduction to Stochastic Modeling

An Introduction to Stochastic Modeling
Author :
Publisher : Academic Press
Total Pages : 410
Release :
ISBN-10 : 9781483269276
ISBN-13 : 1483269272
Rating : 4/5 (76 Downloads)

Synopsis An Introduction to Stochastic Modeling by : Howard M. Taylor

An Introduction to Stochastic Modeling provides information pertinent to the standard concepts and methods of stochastic modeling. This book presents the rich diversity of applications of stochastic processes in the sciences. Organized into nine chapters, this book begins with an overview of diverse types of stochastic models, which predicts a set of possible outcomes weighed by their likelihoods or probabilities. This text then provides exercises in the applications of simple stochastic analysis to appropriate problems. Other chapters consider the study of general functions of independent, identically distributed, nonnegative random variables representing the successive intervals between renewals. This book discusses as well the numerous examples of Markov branching processes that arise naturally in various scientific disciplines. The final chapter deals with queueing models, which aid the design process by predicting system performance. This book is a valuable resource for students of engineering and management science. Engineers will also find this book useful.

Applied Stochastic Analysis

Applied Stochastic Analysis
Author :
Publisher : American Mathematical Soc.
Total Pages : 305
Release :
ISBN-10 : 9781470465698
ISBN-13 : 1470465698
Rating : 4/5 (98 Downloads)

Synopsis Applied Stochastic Analysis by : Weinan E

This is a textbook for advanced undergraduate students and beginning graduate students in applied mathematics. It presents the basic mathematical foundations of stochastic analysis (probability theory and stochastic processes) as well as some important practical tools and applications (e.g., the connection with differential equations, numerical methods, path integrals, random fields, statistical physics, chemical kinetics, and rare events). The book strikes a nice balance between mathematical formalism and intuitive arguments, a style that is most suited for applied mathematicians. Readers can learn both the rigorous treatment of stochastic analysis as well as practical applications in modeling and simulation. Numerous exercises nicely supplement the main exposition.

Introductory Stochastic Analysis for Finance and Insurance

Introductory Stochastic Analysis for Finance and Insurance
Author :
Publisher : John Wiley & Sons
Total Pages : 224
Release :
ISBN-10 : 9780471793205
ISBN-13 : 0471793205
Rating : 4/5 (05 Downloads)

Synopsis Introductory Stochastic Analysis for Finance and Insurance by : X. Sheldon Lin

Incorporates the many tools needed for modeling and pricing infinance and insurance Introductory Stochastic Analysis for Finance and Insuranceintroduces readers to the topics needed to master and use basicstochastic analysis techniques for mathematical finance. The authorpresents the theories of stochastic processes and stochasticcalculus and provides the necessary tools for modeling and pricingin finance and insurance. Practical in focus, the book's emphasisis on application, intuition, and computation, rather thantheory. Consequently, the text is of interest to graduate students,researchers, and practitioners interested in these areas. While thetext is self-contained, an introductory course in probabilitytheory is beneficial to prospective readers. This book evolved from the author's experience as an instructor andhas been thoroughly classroom-tested. Following an introduction,the author sets forth the fundamental information and tools neededby researchers and practitioners working in the financial andinsurance industries: * Overview of Probability Theory * Discrete-Time stochastic processes * Continuous-time stochastic processes * Stochastic calculus: basic topics The final two chapters, Stochastic Calculus: Advanced Topics andApplications in Insurance, are devoted to more advanced topics.Readers learn the Feynman-Kac formula, the Girsanov's theorem, andcomplex barrier hitting times distributions. Finally, readersdiscover how stochastic analysis and principles are applied inpractice through two insurance examples: valuation of equity-linkedannuities under a stochastic interest rate environment andcalculation of reserves for universal life insurance. Throughout the text, figures and tables are used to help simplifycomplex theory and pro-cesses. An extensive bibliography opens upadditional avenues of research to specialized topics. Ideal for upper-level undergraduate and graduate students, thistext is recommended for one-semester courses in stochastic financeand calculus. It is also recommended as a study guide forprofessionals taking Causality Actuarial Society (CAS) and Societyof Actuaries (SOA) actuarial examinations.