Introduction To Pseudo-differential Operators, An (3rd Edition)

Introduction To Pseudo-differential Operators, An (3rd Edition)
Author :
Publisher : World Scientific Publishing Company
Total Pages : 195
Release :
ISBN-10 : 9789814583107
ISBN-13 : 9814583103
Rating : 4/5 (07 Downloads)

Synopsis Introduction To Pseudo-differential Operators, An (3rd Edition) by : Man-wah Wong

The aim of this third edition is to give an accessible and essentially self-contained account of pseudo-differential operators based on the previous edition. New chapters notwithstanding, the elementary and detailed style of earlier editions is maintained in order to appeal to the largest possible group of readers. The focus of this book is on the global theory of elliptic pseudo-differential operators on Lp(Rn).The main prerequisite for a complete understanding of the book is a basic course in functional analysis up to the level of compact operators. It is an ideal introduction for graduate students in mathematics and mathematicians who aspire to do research in pseudo-differential operators and related topics.

Pseudodifferential Operators and Spectral Theory

Pseudodifferential Operators and Spectral Theory
Author :
Publisher : Springer Science & Business Media
Total Pages : 296
Release :
ISBN-10 : 9783642565793
ISBN-13 : 3642565794
Rating : 4/5 (93 Downloads)

Synopsis Pseudodifferential Operators and Spectral Theory by : M.A. Shubin

I had mixed feelings when I thought how I should prepare the book for the second edition. It was clear to me that I had to correct all mistakes and misprints that were found in the book during the life of the first edition. This was easy to do because the mistakes were mostly minor and easy to correct, and the misprints were not many. It was more difficult to decide whether I should update the book (or at least its bibliography) somehow. I decided that it did not need much of an updating. The main value of any good mathematical book is that it teaches its reader some language and some skills. It can not exhaust any substantial topic no matter how hard the author tried. Pseudodifferential operators became a language and a tool of analysis of partial differential equations long ago. Therefore it is meaningless to try to exhaust this topic. Here is an easy proof. As of July 3, 2000, MathSciNet (the database of the American Mathematical Society) in a few seconds found 3695 sources, among them 363 books, during its search for "pseudodifferential operator". (The search also led to finding 963 sources for "pseudo-differential operator" but I was unable to check how much the results ofthese two searches intersected). This means that the corresponding words appear either in the title or in the review published in Mathematical Reviews.

An Introduction to Pseudo-differential Operators

An Introduction to Pseudo-differential Operators
Author :
Publisher : World Scientific
Total Pages : 156
Release :
ISBN-10 : 9810238134
ISBN-13 : 9789810238131
Rating : 4/5 (34 Downloads)

Synopsis An Introduction to Pseudo-differential Operators by : Man Wah Wong

In this new edition of An Introduction to Pseudo-Differential Operators, the style & scope of the original book are retained. A chapter on the interchange of order of differentiation & integration is added at the beginning to make the book more self-contained, & a chapter on weak solutions of pseudo-differential equations is added at the end to enhance the value of the book as a work on partial differential equations. Several chapters are provided with additional exercises. The bibliography is slightly expanded & an index is added. Contents: Differentiation of Integrals Depending on Parameters; The Convolution; The Fourier Transform; Tempered Distributions; Symbols, Pseudo-Differential Operators & Asymptotic Expansions; A Partition of Unity & Taylor's Formula; The Product of Two Pseudo-Differential Operators; The Formal Adjoint of a Pseudo-Differential Operator; The Parametrix of an Elliptic Pseudo-Differential Operator; Lp-Boundedness of Pseudo-Differential Operators, 1

Introduction To Pseudo-differential Operators, An (2nd Edition)

Introduction To Pseudo-differential Operators, An (2nd Edition)
Author :
Publisher : World Scientific Publishing Company
Total Pages : 150
Release :
ISBN-10 : 9789813105423
ISBN-13 : 9813105429
Rating : 4/5 (23 Downloads)

Synopsis Introduction To Pseudo-differential Operators, An (2nd Edition) by : Man-wah Wong

In this new edition of An Introduction to Pseudo-Differential Operators, the style and scope of the original book are retained. A chapter on the interchange of order of differentiation and integration is added at the beginning to make the book more self-contained, and a chapter on weak solutions of pseudo-differential equations is added at the end to enhance the value of the book as a work on partial differential equations. Several chapters are provided with additional exercises. The bibliography is slightly expanded and an index is added.

Pseudo-differential Operators and the Nash-Moser Theorem

Pseudo-differential Operators and the Nash-Moser Theorem
Author :
Publisher : American Mathematical Soc.
Total Pages : 178
Release :
ISBN-10 : 9780821834541
ISBN-13 : 0821834541
Rating : 4/5 (41 Downloads)

Synopsis Pseudo-differential Operators and the Nash-Moser Theorem by : Serge Alinhac

This book presents two essential and apparently unrelated subjects. The first, microlocal analysis and the theory of pseudo-differential operators, is a basic tool in the study of partial differential equations and in analysis on manifolds. The second, the Nash-Moser theorem, continues to be fundamentally important in geometry, dynamical systems and nonlinear PDE. Each of the subjects, which are of interest in their own right as well as for applications, can be learned separately. But the book shows the deep connections between the two themes, particularly in the middle part, which is devoted to Littlewood-Paley theory, dyadic analysis, and the paradifferential calculus and its application to interpolation inequalities. An important feature is the elementary and self-contained character of the text, to which many exercises and an introductory Chapter $0$ with basic material have been added. This makes the book readable by graduate students or researchers from one subject who are interested in becoming familiar with the other. It can also be used as a textbook for a graduate course on nonlinear PDE or geometry.

Metrics on the Phase Space and Non-Selfadjoint Pseudo-Differential Operators

Metrics on the Phase Space and Non-Selfadjoint Pseudo-Differential Operators
Author :
Publisher : Springer Science & Business Media
Total Pages : 408
Release :
ISBN-10 : 9783764385101
ISBN-13 : 3764385103
Rating : 4/5 (01 Downloads)

Synopsis Metrics on the Phase Space and Non-Selfadjoint Pseudo-Differential Operators by : Nicolas Lerner

This book is devoted to the study of pseudo-di?erential operators, with special emphasis on non-selfadjoint operators, a priori estimates and localization in the phase space. We have tried here to expose the most recent developments of the theory with its applications to local solvability and semi-classical estimates for non-selfadjoint operators. The?rstchapter,Basic Notions of Phase Space Analysis,isintroductoryand gives a presentation of very classical classes of pseudo-di?erential operators, along with some basic properties. As an illustration of the power of these methods, we give a proof of propagation of singularities for real-principal type operators (using aprioriestimates,andnotFourierintegraloperators),andweintroducethereader to local solvability problems. That chapter should be useful for a reader, say at the graduate level in analysis, eager to learn some basics on pseudo-di?erential operators. The second chapter, Metrics on the Phase Space begins with a review of symplectic algebra, Wigner functions, quantization formulas, metaplectic group and is intended to set the basic study of the phase space. We move forward to the more general setting of metrics on the phase space, following essentially the basic assumptions of L. H ̈ ormander (Chapter 18 in the book [73]) on this topic.

Pseudo-differential Operators

Pseudo-differential Operators
Author :
Publisher : MIT Press (MA)
Total Pages : 455
Release :
ISBN-10 : 0262110806
ISBN-13 : 9780262110808
Rating : 4/5 (06 Downloads)

Synopsis Pseudo-differential Operators by : Hitoshi Kumanogō

This self-contained and formal exposition of the theory and applications of pseudo-differential operators is addressed not only to specialists and graduate students but to advanced undergraduates as well. The only prerequisite is a solid background in calculus, with all further preparation for the study of the subject provided by the book's first chapter. This chapter introduces the fundamental concepts of spaces of functions and Fourier transforms, and covers such topics as linear operators, linear functionals, dual spaces, Hilbert spaces, distributions, and oscillatory integrals. The second chapter develops the theory of pseudo-differential operators themselves on the basis of elementary calculus and concepts presented in the opening chapter, while the third chapter extends the theory of Sobolev spaces. The major applications of the theory, most of them the result of work done since 1965, are in the study and solution of linear partial differential equations, which are found in many branches of pure and applied mathematics and are ubiquitous throughout the sciences and technology. The final seven chapters of Pseudo-Differential Operators take up a range of applications, and deal with such problems as hypoellipticity, local solvability, local uniqueness, index theory, elliptic boundary values, complex powers, initial values, well-posedness, the fixed point theorem of Atiyah-Bott-Lefschetz, Fourier integral operators, and propagation of singularities. For this English edition, the last chapter has been greatly extended and appendixes added in order to present the latest developments of the subject. Multiphase Fourier integral operators are applied to initial-value problems, the micro-local theory is developed from the notion of the "wave front set," and the Nirenberg-Treves existence theorem for the solutions of partial differential equations is discussed. The systematic use of the "multiple symbols" introduced by K. O. Friedrichs provides elegant proofs of otherwise lengthy developments. Hitoshi Kumano-Go teaches in the Mathematics Department at Osaka University.

Discrete Fourier Analysis

Discrete Fourier Analysis
Author :
Publisher : Springer Science & Business Media
Total Pages : 175
Release :
ISBN-10 : 9783034801164
ISBN-13 : 3034801165
Rating : 4/5 (64 Downloads)

Synopsis Discrete Fourier Analysis by : M. W. Wong

This textbook presents basic notions and techniques of Fourier analysis in discrete settings. Written in a concise style, it is interlaced with remarks, discussions and motivations from signal analysis. The first part is dedicated to topics related to the Fourier transform, including discrete time-frequency analysis and discrete wavelet analysis. Basic knowledge of linear algebra and calculus is the only prerequisite. The second part is built on Hilbert spaces and Fourier series and culminates in a section on pseudo-differential operators, providing a lucid introduction to this advanced topic in analysis. Some measure theory language is used, although most of this part is accessible to students familiar with an undergraduate course in real analysis. Discrete Fourier Analysis is aimed at advanced undergraduate and graduate students in mathematics and applied mathematics. Enhanced with exercises, it will be an excellent resource for the classroom as well as for self-study.

Elementary Introduction to the Theory of Pseudodifferential Operators

Elementary Introduction to the Theory of Pseudodifferential Operators
Author :
Publisher : Routledge
Total Pages : 120
Release :
ISBN-10 : 9781351452939
ISBN-13 : 1351452932
Rating : 4/5 (39 Downloads)

Synopsis Elementary Introduction to the Theory of Pseudodifferential Operators by : Xavier Saint Raymond

In the 19th century, the Fourier transformation was introduced to study various problems of partial differential equations. Since 1960, this old tool has been developed into a well-organized theory called microlocal analysis that is based on the concept of the pseudo-differential operator. This book provides the fundamental knowledge non-specialists need in order to use microlocal analysis. It is strictly mathematical in the sense that it contains precise definitions, statements of theorems and complete proofs, and follows the usual method of pure mathematics. The book explains the origin of the theory (i.e., Fourier transformation), presents an elementary construcion of distribution theory, and features a careful exposition of standard pseudodifferential theory. Exercises, historical notes, and bibliographical references are included to round out this essential book for mathematics students; engineers, physicists, and mathematicians who use partial differential equations; and advanced mathematics instructors.