Introduction To Probability With Statistical Applications
Download Introduction To Probability With Statistical Applications full books in PDF, epub, and Kindle. Read online free Introduction To Probability With Statistical Applications ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Géza Schay |
Publisher |
: Birkhäuser |
Total Pages |
: 389 |
Release |
: 2016-06-17 |
ISBN-10 |
: 9783319306209 |
ISBN-13 |
: 3319306200 |
Rating |
: 4/5 (09 Downloads) |
Synopsis Introduction to Probability with Statistical Applications by : Géza Schay
Now in its second edition, this textbook serves as an introduction to probability and statistics for non-mathematics majors who do not need the exhaustive detail and mathematical depth provided in more comprehensive treatments of the subject. The presentation covers the mathematical laws of random phenomena, including discrete and continuous random variables, expectation and variance, and common probability distributions such as the binomial, Poisson, and normal distributions. More classical examples such as Montmort's problem, the ballot problem, and Bertrand’s paradox are now included, along with applications such as the Maxwell-Boltzmann and Bose-Einstein distributions in physics. Key features in new edition: * 35 new exercises * Expanded section on the algebra of sets * Expanded chapters on probabilities to include more classical examples * New section on regression * Online instructors' manual containing solutions to all exercises“/p> Advanced undergraduate and graduate students in computer science, engineering, and other natural and social sciences with only a basic background in calculus will benefit from this introductory text balancing theory with applications. Review of the first edition: This textbook is a classical and well-written introduction to probability theory and statistics. ... the book is written ‘for an audience such as computer science students, whose mathematical background is not very strong and who do not need the detail and mathematical depth of similar books written for mathematics or statistics majors.’ ... Each new concept is clearly explained and is followed by many detailed examples. ... numerous examples of calculations are given and proofs are well-detailed." (Sophie Lemaire, Mathematical Reviews, Issue 2008 m)
Author |
: Rinaldo B. Schinazi |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 349 |
Release |
: 2011-12-15 |
ISBN-10 |
: 9780817682491 |
ISBN-13 |
: 081768249X |
Rating |
: 4/5 (91 Downloads) |
Synopsis Probability with Statistical Applications by : Rinaldo B. Schinazi
This second edition textbook offers a practical introduction to probability for undergraduates at all levels with different backgrounds and views towards applications. Calculus is a prerequisite for understanding the basic concepts, however the book is written with a sensitivity to students’ common difficulties with calculus that does not obscure the thorough treatment of the probability content. The first six chapters of this text neatly and concisely cover the material traditionally required by most undergraduate programs for a first course in probability. The comprehensive text includes a multitude of new examples and exercises, and careful revisions throughout. Particular attention is given to the expansion of the last three chapters of the book with the addition of one entirely new chapter (9) on ’Finding and Comparing Estimators.’ The classroom-tested material presented in this second edition forms the basis for a second course introducing mathematical statistics.
Author |
: Narayanaswamy Balakrishnan |
Publisher |
: John Wiley & Sons |
Total Pages |
: 548 |
Release |
: 2021-11-24 |
ISBN-10 |
: 9781118548554 |
ISBN-13 |
: 1118548558 |
Rating |
: 4/5 (54 Downloads) |
Synopsis Introduction to Probability by : Narayanaswamy Balakrishnan
INTRODUCTION TO PROBABILITY Discover practical models and real-world applications of multivariate models useful in engineering, business, and related disciplines In Introduction to Probability: Multivariate Models and Applications, a team of distinguished researchers delivers a comprehensive exploration of the concepts, methods, and results in multivariate distributions and models. Intended for use in a second course in probability, the material is largely self-contained, with some knowledge of basic probability theory and univariate distributions as the only prerequisite. This textbook is intended as the sequel to Introduction to Probability: Models and Applications. Each chapter begins with a brief historical account of some of the pioneers in probability who made significant contributions to the field. It goes on to describe and explain a critical concept or method in multivariate models and closes with two collections of exercises designed to test basic and advanced understanding of the theory. A wide range of topics are covered, including joint distributions for two or more random variables, independence of two or more variables, transformations of variables, covariance and correlation, a presentation of the most important multivariate distributions, generating functions and limit theorems. This important text: Includes classroom-tested problems and solutions to probability exercises Highlights real-world exercises designed to make clear the concepts presented Uses Mathematica software to illustrate the text’s computer exercises Features applications representing worldwide situations and processes Offers two types of self-assessment exercises at the end of each chapter, so that students may review the material in that chapter and monitor their progress Perfect for students majoring in statistics, engineering, business, psychology, operations research and mathematics taking a second course in probability, Introduction to Probability: Multivariate Models and Applications is also an indispensable resource for anyone who is required to use multivariate distributions to model the uncertainty associated with random phenomena.
Author |
: John J. Kinney |
Publisher |
: John Wiley & Sons |
Total Pages |
: 480 |
Release |
: 2015-01-13 |
ISBN-10 |
: 9781118947104 |
ISBN-13 |
: 111894710X |
Rating |
: 4/5 (04 Downloads) |
Synopsis Probability by : John J. Kinney
Praise for the First Edition "This is a well-written and impressively presented introduction to probability and statistics. The text throughout is highly readable, and the author makes liberal use of graphs and diagrams to clarify the theory." - The Statistician Thoroughly updated, Probability: An Introduction with Statistical Applications, Second Edition features a comprehensive exploration of statistical data analysis as an application of probability. The new edition provides an introduction to statistics with accessible coverage of reliability, acceptance sampling, confidence intervals, hypothesis testing, and simple linear regression. Encouraging readers to develop a deeper intuitive understanding of probability, the author presents illustrative geometrical presentations and arguments without the need for rigorous mathematical proofs. The Second Edition features interesting and practical examples from a variety of engineering and scientific fields, as well as: Over 880 problems at varying degrees of difficulty allowing readers to take on more challenging problems as their skill levels increase Chapter-by-chapter projects that aid in the visualization of probability distributions New coverage of statistical quality control and quality production An appendix dedicated to the use of Mathematica® and a companion website containing the referenced data sets Featuring a practical and real-world approach, this textbook is ideal for a first course in probability for students majoring in statistics, engineering, business, psychology, operations research, and mathematics. Probability: An Introduction with Statistical Applications, Second Edition is also an excellent reference for researchers and professionals in any discipline who need to make decisions based on data as well as readers interested in learning how to accomplish effective decision making from data.
Author |
: Paul L. Meyer |
Publisher |
: Oxford and IBH Publishing |
Total Pages |
: 388 |
Release |
: 1965 |
ISBN-10 |
: |
ISBN-13 |
: |
Rating |
: 4/5 ( Downloads) |
Synopsis Introductory Probability and Statistical Applications by : Paul L. Meyer
Introduction to probability; Finite sample spaces; Conditional probability and independence; One-dimensional random variables; Functions of random variables; Two-and higher dimensional random variables; Further characterization of random variables; The poisson and other discrete random variables; Some important continuous variables; The moment-generating function; Application to reliability theory; Sums of random variables; Samples and sampling distributions; Estimation of parameters; Testing hypothesis.
Author |
: Daren Starnes |
Publisher |
: Macmillan Higher Education |
Total Pages |
: 1539 |
Release |
: 2016-10-07 |
ISBN-10 |
: 9781319120139 |
ISBN-13 |
: 131912013X |
Rating |
: 4/5 (39 Downloads) |
Synopsis Statistics and Probability with Applications (High School) by : Daren Starnes
Statistics and Probability with Applications, Third Edition is the only introductory statistics text written by high school teachers for high school teachers and students. Daren Starnes, Josh Tabor, and the extended team of contributors bring their in-depth understanding of statistics and the challenges faced by high school students and teachers to development of the text and its accompanying suite of print and interactive resources for learning and instruction. A complete re-envisioning of the authors’ Statistics Through Applications, this new text covers the core content for the course in a series of brief, manageable lessons, making it easy for students and teachers to stay on pace. Throughout, new pedagogical tools and lively real-life examples help captivate students and prepare them to use statistics in college courses and in any career.
Author |
: David F. Anderson |
Publisher |
: Cambridge University Press |
Total Pages |
: 447 |
Release |
: 2017-11-02 |
ISBN-10 |
: 9781108244985 |
ISBN-13 |
: 110824498X |
Rating |
: 4/5 (85 Downloads) |
Synopsis Introduction to Probability by : David F. Anderson
This classroom-tested textbook is an introduction to probability theory, with the right balance between mathematical precision, probabilistic intuition, and concrete applications. Introduction to Probability covers the material precisely, while avoiding excessive technical details. After introducing the basic vocabulary of randomness, including events, probabilities, and random variables, the text offers the reader a first glimpse of the major theorems of the subject: the law of large numbers and the central limit theorem. The important probability distributions are introduced organically as they arise from applications. The discrete and continuous sides of probability are treated together to emphasize their similarities. Intended for students with a calculus background, the text teaches not only the nuts and bolts of probability theory and how to solve specific problems, but also why the methods of solution work.
Author |
: Richard L. Scheaffer |
Publisher |
: Cengage Learning |
Total Pages |
: 470 |
Release |
: 2010 |
ISBN-10 |
: 143904726X |
ISBN-13 |
: 9781439047262 |
Rating |
: 4/5 (6X Downloads) |
Synopsis Introduction to Probability and Its Applications by : Richard L. Scheaffer
In this calculus-based text, theory is developed to a practical degree around models used in real-world applications.
Author |
: Jane M. Horgan |
Publisher |
: John Wiley & Sons |
Total Pages |
: 536 |
Release |
: 2019-12-18 |
ISBN-10 |
: 9781119536987 |
ISBN-13 |
: 1119536987 |
Rating |
: 4/5 (87 Downloads) |
Synopsis Probability with R by : Jane M. Horgan
Provides a comprehensive introduction to probability with an emphasis on computing-related applications This self-contained new and extended edition outlines a first course in probability applied to computer-related disciplines. As in the first edition, experimentation and simulation are favoured over mathematical proofs. The freely down-loadable statistical programming language R is used throughout the text, not only as a tool for calculation and data analysis, but also to illustrate concepts of probability and to simulate distributions. The examples in Probability with R: An Introduction with Computer Science Applications, Second Edition cover a wide range of computer science applications, including: testing program performance; measuring response time and CPU time; estimating the reliability of components and systems; evaluating algorithms and queuing systems. Chapters cover: The R language; summarizing statistical data; graphical displays; the fundamentals of probability; reliability; discrete and continuous distributions; and more. This second edition includes: improved R code throughout the text, as well as new procedures, packages and interfaces; updated and additional examples, exercises and projects covering recent developments of computing; an introduction to bivariate discrete distributions together with the R functions used to handle large matrices of conditional probabilities, which are often needed in machine translation; an introduction to linear regression with particular emphasis on its application to machine learning using testing and training data; a new section on spam filtering using Bayes theorem to develop the filters; an extended range of Poisson applications such as network failures, website hits, virus attacks and accessing the cloud; use of new allocation functions in R to deal with hash table collision, server overload and the general allocation problem. The book is supplemented with a Wiley Book Companion Site featuring data and solutions to exercises within the book. Primarily addressed to students of computer science and related areas, Probability with R: An Introduction with Computer Science Applications, Second Edition is also an excellent text for students of engineering and the general sciences. Computing professionals who need to understand the relevance of probability in their areas of practice will find it useful.
Author |
: Peter Zörnig |
Publisher |
: Walter de Gruyter GmbH & Co KG |
Total Pages |
: 333 |
Release |
: 2016-07-11 |
ISBN-10 |
: 9783110402834 |
ISBN-13 |
: 3110402831 |
Rating |
: 4/5 (34 Downloads) |
Synopsis Probability Theory and Statistical Applications by : Peter Zörnig
This accessible and easy-to-read book provides many examples to illustrate diverse topics in probability and statistics, from initial concepts up to advanced calculations. Special attention is devoted e.g. to independency of events, inequalities in probability and functions of random variables. The book is directed to students of mathematics, statistics, engineering, and other quantitative sciences, in particular to readers who need or want to learn by self-study. The author is convinced that sophisticated examples are more useful for the student than a lengthy formalism treating the greatest possible generality. Contents: Mathematics revision Introduction to probability Finite sample spaces Conditional probability and independence One-dimensional random variables Functions of random variables Bi-dimensional random variables Characteristics of random variables Discrete probability models Continuous probability models Generating functions in probability Sums of many random variables Samples and sampling distributions Estimation of parameters Hypothesis tests