A Primer of Infinitesimal Analysis

A Primer of Infinitesimal Analysis
Author :
Publisher : Cambridge University Press
Total Pages : 7
Release :
ISBN-10 : 9780521887182
ISBN-13 : 0521887186
Rating : 4/5 (82 Downloads)

Synopsis A Primer of Infinitesimal Analysis by : John L. Bell

A rigorous, axiomatically formulated presentation of the 'zero-square', or 'nilpotent' infinitesimal.

Models for Smooth Infinitesimal Analysis

Models for Smooth Infinitesimal Analysis
Author :
Publisher : Springer Science & Business Media
Total Pages : 401
Release :
ISBN-10 : 9781475741438
ISBN-13 : 147574143X
Rating : 4/5 (38 Downloads)

Synopsis Models for Smooth Infinitesimal Analysis by : Ieke Moerdijk

The aim of this book is to construct categories of spaces which contain all the C?-manifolds, but in addition infinitesimal spaces and arbitrary function spaces. To this end, the techniques of Grothendieck toposes (and the logic inherent to them) are explained at a leisurely pace and applied. By discussing topics such as integration, cohomology and vector bundles in the new context, the adequacy of these new spaces for analysis and geometry will be illustrated and the connection to the classical approach to C?-manifolds will be explained.

Infinitesimal Analysis

Infinitesimal Analysis
Author :
Publisher : Springer Science & Business Media
Total Pages : 435
Release :
ISBN-10 : 9789401700634
ISBN-13 : 940170063X
Rating : 4/5 (34 Downloads)

Synopsis Infinitesimal Analysis by : E.I. Gordon

Infinitesimal analysis, once a synonym for calculus, is now viewed as a technique for studying the properties of an arbitrary mathematical object by discriminating between its standard and nonstandard constituents. Resurrected by A. Robinson in the early 1960's with the epithet 'nonstandard', infinitesimal analysis not only has revived the methods of infinitely small and infinitely large quantities, which go back to the very beginning of calculus, but also has suggested many powerful tools for research in every branch of modern mathematics. The book sets forth the basics of the theory, as well as the most recent applications in, for example, functional analysis, optimization, and harmonic analysis. The concentric style of exposition enables this work to serve as an elementary introduction to one of the most promising mathematical technologies, while revealing up-to-date methods of monadology and hyperapproximation. This is a companion volume to the earlier works on nonstandard methods of analysis by A.G. Kusraev and S.S. Kutateladze (1999), ISBN 0-7923-5921-6 and Nonstandard Analysis and Vector Lattices edited by S.S. Kutateladze (2000), ISBN 0-7923-6619-0

Introduction to Infinite Dimensional Stochastic Analysis

Introduction to Infinite Dimensional Stochastic Analysis
Author :
Publisher : Springer Science & Business Media
Total Pages : 308
Release :
ISBN-10 : 9789401141086
ISBN-13 : 9401141088
Rating : 4/5 (86 Downloads)

Synopsis Introduction to Infinite Dimensional Stochastic Analysis by : Zhi-yuan Huang

The infinite dimensional analysis as a branch of mathematical sciences was formed in the late 19th and early 20th centuries. Motivated by problems in mathematical physics, the first steps in this field were taken by V. Volterra, R. GateallX, P. Levy and M. Frechet, among others (see the preface to Levy[2]). Nevertheless, the most fruitful direction in this field is the infinite dimensional integration theory initiated by N. Wiener and A. N. Kolmogorov which is closely related to the developments of the theory of stochastic processes. It was Wiener who constructed for the first time in 1923 a probability measure on the space of all continuous functions (i. e. the Wiener measure) which provided an ideal math ematical model for Brownian motion. Then some important properties of Wiener integrals, especially the quasi-invariance of Gaussian measures, were discovered by R. Cameron and W. Martin[l, 2, 3]. In 1931, Kolmogorov[l] deduced a second partial differential equation for transition probabilities of Markov processes order with continuous trajectories (i. e. diffusion processes) and thus revealed the deep connection between theories of differential equations and stochastic processes. The stochastic analysis created by K. Ito (also independently by Gihman [1]) in the forties is essentially an infinitesimal analysis for trajectories of stochastic processes. By virtue of Ito's stochastic differential equations one can construct diffusion processes via direct probabilistic methods and treat them as function als of Brownian paths (i. e. the Wiener functionals).

Introduction to Analysis of the Infinite

Introduction to Analysis of the Infinite
Author :
Publisher : Springer Science & Business Media
Total Pages : 341
Release :
ISBN-10 : 9781461210214
ISBN-13 : 1461210216
Rating : 4/5 (14 Downloads)

Synopsis Introduction to Analysis of the Infinite by : Leonhard Euler

From the preface of the author: "...I have divided this work into two books; in the first of these I have confined myself to those matters concerning pure analysis. In the second book I have explained those thing which must be known from geometry, since analysis is ordinarily developed in such a way that its application to geometry is shown. In the first book, since all of analysis is concerned with variable quantities and functions of such variables, I have given full treatment to functions. I have also treated the transformation of functions and functions as the sum of infinite series. In addition I have developed functions in infinite series..."

Non-standard Analysis

Non-standard Analysis
Author :
Publisher : Princeton University Press
Total Pages : 315
Release :
ISBN-10 : 9781400884223
ISBN-13 : 1400884225
Rating : 4/5 (23 Downloads)

Synopsis Non-standard Analysis by : Abraham Robinson

Considered by many to be Abraham Robinson's magnum opus, this book offers an explanation of the development and applications of non-standard analysis by the mathematician who founded the subject. Non-standard analysis grew out of Robinson's attempt to resolve the contradictions posed by infinitesimals within calculus. He introduced this new subject in a seminar at Princeton in 1960, and it remains as controversial today as it was then. This paperback reprint of the 1974 revised edition is indispensable reading for anyone interested in non-standard analysis. It treats in rich detail many areas of application, including topology, functions of a real variable, functions of a complex variable, and normed linear spaces, together with problems of boundary layer flow of viscous fluids and rederivations of Saint-Venant's hypothesis concerning the distribution of stresses in an elastic body.

Infinitesimal Calculus

Infinitesimal Calculus
Author :
Publisher : Courier Corporation
Total Pages : 146
Release :
ISBN-10 : 9780486151014
ISBN-13 : 0486151018
Rating : 4/5 (14 Downloads)

Synopsis Infinitesimal Calculus by : James M. Henle

Introducing calculus at the basic level, this text covers hyperreal numbers and hyperreal line, continuous functions, integral and differential calculus, fundamental theorem, infinite sequences and series, infinite polynomials, more. 1979 edition.

Lectures on the Hyperreals

Lectures on the Hyperreals
Author :
Publisher : Springer Science & Business Media
Total Pages : 292
Release :
ISBN-10 : 9781461206156
ISBN-13 : 1461206154
Rating : 4/5 (56 Downloads)

Synopsis Lectures on the Hyperreals by : Robert Goldblatt

An introduction to nonstandard analysis based on a course given by the author. It is suitable for beginning graduates or upper undergraduates, or for self-study by anyone familiar with elementary real analysis. It presents nonstandard analysis not just as a theory about infinitely small and large numbers, but as a radically different way of viewing many standard mathematical concepts and constructions. It is a source of new ideas, objects and proofs, and a wealth of powerful new principles of reasoning. The book begins with the ultrapower construction of hyperreal number systems, and proceeds to develop one-variable calculus, analysis and topology from the nonstandard perspective. It then sets out the theory of enlargements of fragments of the mathematical universe, providing a foundation for the full-scale development of the nonstandard methodology. The final chapters apply this to a number of topics, including Loeb measure theory and its relation to Lebesgue measure on the real line. Highlights include an early introduction of the ideas of internal, external and hyperfinite sets, and a more axiomatic set-theoretic approach to enlargements than is usual.

Nonstandard Analysis

Nonstandard Analysis
Author :
Publisher : Courier Corporation
Total Pages : 184
Release :
ISBN-10 : 0486432793
ISBN-13 : 9780486432793
Rating : 4/5 (93 Downloads)

Synopsis Nonstandard Analysis by : Alain Robert

This concise text is based on the axiomatic internal set theory approach. Theoretical topics include idealization, standardization, and transfer, real numbers and numerical functions, continuity, differentiability, and integration. Applications cover invariant means, approximation of functions, differential equations, more. Exercises, hints, and solutions. "Mathematics teaching at its best." — European Journal of Physics. 1988 edition.